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1. Introduction

Many applications of speech communication systems, such
as telecommunication systems, hearing aid systems, and
video conference systems have been used. Although, these
systems have the problem of speech quality deterioration un-
der noisy conditions. Thus, it is necessary to obtain high
quality speech signal by noise reduction. However, the very
annoying distortion, so called musical noise arises owing to
nonlinear signal processing. Also, the excessive noise reduc-
tion generates especially the speech distortion that leads to the
degradation of the speech quality and the speech recognition
performance.

To solve this problem, harmonic regeneration noise reduc-
tion (HRNR) has been proposed [1]. HRNR can regenerate
the lost harmonic and obtain the good quality speech. Nev-
ertheless, HRNR mentions only the validity for Wiener Fil-
tering (WF) [2]. In this paper, we evaluate the sound quality
and the speech recognition performance using HRNR tech-
nique for three noise reduction techniques (WF, Spectral Sub-
traction (SS) [3], Minimum Mean-Square Error Short-Time
Spectral Amplitude (MMSE-STSA) estimator [4]).

2. Noise Reduction Methods

2.1 Definition of Signals

The observed signal z(t) is composed of the speech sig-
nal s(t) and the noise signal n(t) as z(t) = s(t)+n(t). Then,
we apply the short-time Fourier transform to the observed sig-
nal to obtain the time-frequency signal X (p, k), expressed
as X(p,k) = S(p, k) + N(p, k), where p is the short-time
frame index and k is the frequency bin. Next, we estimate the
spectrum of the speech signal S(p, k) as

S(p, k) = G(p, k)X (p, k) )

where G(p, k) is the spectral gain of each noise reduction
method.

2.2 WF

WF is a classical noise reduction technique [2] and its spec-
tral gain Gywr (p, k) is defined as

£(p, k)

Gwr(p, k) = TR

2
Here, &(p,k) is a priori SNR, defined as &(p, k) =
E[|S(p, k)|*]/E[|N (p, k)|*], where E[] is the expectation op-
erator. However, since we cannot estimate |S(p, k)|* in ad-

vance, we calculate the a priori SNR via the decision-directed
approach as [4]

. IGlp—1,k—1)X(p—1)|

S = R P
+ (1 — a)Max[y(p, k) —

1,0] 3
where N (p, k) is the estimated noise signal, « is the forget-
ting factor. Generally, the forgetting factor « is set to 0.98 to

obtain the better sound quality [4]. Also, 7(p, k) is a posteri-
ori SNR defined as y(p, k) = | X (p, k)|?/E[|N (p, k)|?].

2.3 SS

SS is a usually used noise reduction technique that has
small amount of calculation and high noise suppression per-
formance [3]. This method subtracts the estimated noise sig-
nal from the observed signal in power spectral domain. The
spectral gain Gsg(p, k) is expressed as

Gss(p, k) =
1 _ BEIN(k)?]
0

[X(p.k)]?
where [ is the oversubtraction parameter that adjusts the
amount of noise suppression.

(1X(p. k)* > BE[IN (p, k)[)
(otherwise)

“)
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2.4 MMSE-STSA Estimator

The MMSE-STSA estimator minimizes the mean-square
error between the amplitude spectra of the original speech and
the estimated speech signals. The spectral gain Gsrsa (p, k)

is expressed as
v(p, k) 3 I
A k) <2> M <_2’ b, k)>
&)

where I'(h) and M (a;b; z) are the gamma function and the
confluent hypergeometric function, respectively. v(p, k) is
expressed as follows:

Gstsa(p, k) =

v(p, k) = (6)
where £(p, k) is estimated using the decision-directed ap-
proach in eq. (3) as WFE.

3. Harmonic Regeneration

The excessive noise reduction generates harmonic distor-
tion and degrades the speech quality. The HRNR technique
is proposed to restore the missing harmonics due to noise re-
duction [1]. The block diagram of HRNR technique is shown
in Fig. 1.

HRNR spectral gain Gurng (p, k) consists of the refined a
priori SNR fHRNR(p, k) and the a posteriori SNR ~(p, k) as

(N

where function v can be chosen from various spectral gain
functions (WEF, MMSE-STSA estimator, etc.). Also, the re-
fined a priori SNR Egrnr(p, k) is computed by

: _ o DISE R + (1 = (0, Sharmol. D
S ) = B[N (p, 1)

Grurar (9, k) = v(&arar (0, k), (0, k)

®)

where p(p, k) is used to adjust the mixing level of |S(p, k)|
and |Sharmo (P, k)|. It is better to set p(p,k) equal
to the spectral gain in noise reduction part (Gwr(p, k),
Gss(p, k) . Gstsa(p, k), etc.) [1]. The restored signal spec-
trum Sharmo (P, k) is obtained by

Sharmo (0, k) = FT [NL (IFT [S(p, k)} )} ©)

where N L(-) is non-linear function (e.g., absolute value, min-
imum, or maximum relative to a threshold, etc.), FT [-] and
IFT [-] represent the Fourier and the inverse Fourier trans-
forms, respectively. Finally, the regenerated harmonics signal
computed as

Surnr (D, k) = Gurnr(p, k) X (p, k) (10)
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Figure 1: Block diagram for HRNR

4. Objective Evaluation Experiment

4.1 Overview

In ref. [1], it was reported only the validity for WF in terms
of speech distortion. Then, we evaluate the second quality on
the basis of the amount of musical noise generation and SNR
improvement for various noise reduction techniques. In this
section, we use following three objective evaluations (Noise
Reduction Rate: NRR [5] for SNR improvement, Kurtosis
Ratio: KR [5] for the amount musical noise generation, and
Cepstral Distortion: CD [6] for speech distortion) and inves-
tigate the sound quality for HRNR.

4.2 Definition of Objective Evaluations

4.2.1 NRR

We introduce NRR to evaluate the SNR improvement as

Els3ul/Elnéu]
R = 10080 Tt ik

in

an

where si, and s, are input and output speech signals, re-
spectively, and n;, and ne,t are input and output noise sig-
nals, respectively.

4.2.2 KR

KR is an objective measurement for musical noise genera-
tion. KR is defined by

KR = kurtproc/kurtorg (12)

where kurtp.oc is the kurtosis of the processed signal and

kurt,g is the kurtosis of the observed signal. KR decreases
as the amount of generated musical noise decreases.
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423 CD

CD is an objective measurement for speech distortion de-
fined by

20

D= >
¢ T'log 10

T B
Z Z 2(C'out(pa k) - Cmf(p’ k))Q
k=1

p=1
(13)

where 7' is the frame length, B is the number dimensions of
cepstrum, Coyut(p, k) and Cret(p, k) are cepstral coefficients
of after processing and the clean speech, respectively.

4.3 Experimental Condition

We evaluated the effect of HRNR using three objec-
tive measurements (NRR, KR, CD). We used 10 speakers
(five males and five females) from the JNAS database [7] for
the target signals. Also, we mixed the speech signals with
three types of noise (railway station noise, street noise and
white Gaussian noise). The input SNR of the test data is set
to 10 dB or 15 dB. All the signals used in this experiment
were sampled at 16 kHz with 16 bit accuracy. The size of the
Fourier transform is 512, and frame shift length was is 128.

In this experiment, the signals suppressed by three classi-
cal noise reduction techniques (WF, SS, and MMSE-STSA
estimator) and restored by HRNR technique. We set the gain
function v in eq. (7) and parameter p(p, k) in eq. (8) to the
spectral gain of each noise reduction method (e.g., v is set
to égrnr/(1 + Eurnr) and p = Gwr in WF case). Also,
we define this case as WF + HRNR, as well as SS+HRNR,
MMSE-STSA estimator + HRNR.

The chosen nonlinear function N L(-) in eq. (9) is the half-
wave function. We manually controlled the forgetting fac-
tor a for WF and MMSE-STSA estimator and the oversub-
traction parameter 3 for SS to achieve 10-dB NRR. We set
the dimension of cepstrum B in eq. (13) to 22.

4.4 Experimental Results

Figure 2 shows the spectrograms that the noisy signal is
mixed the clean speech signal with white Gaussian noise in
10-dB input SNR. From Fig. 2 (c) we can confirm that the
degraded harmonic component is regenerated by HRNR as
compared to Fig. 2 (b).

Next, Figs. 3 and 4 indicate the result of each objective
evaluation for NRR, KR and CD, respectively. Fig. 3 (a) and
Fig. 4 (a) show that the variation of NRR by applying HRNR
is little. Regarding Fig. 3 (b) and Fig. 4 (b), it is shown that
KR decrease in all noisy environment when the spectral gain
is set to SS and the enhanced signal is restored by HRNR.
Consequently, the amount of musical noise generation de-
creases. In addition, from Fig. 3 (c) and Fig. 4 (c), HRNR
reduces CD in all noisy environment. It follows that when we

apply HRNR, we can obtain an enhanced speech signal with
less speech distortion in SS and MMSE-STSA estimator.

(a) Noisy speech (b) Suppressed speech
RCTER T . 2
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Time [s]

Time [s]

Figure 2: Spectrograms of (a): Noisy speech mixed with
white Gaussian noise at 10-dB SNR, (b): Suppressed speech
by SS, (c): Suppressed speech signal by HRNR, and (d):
Clean speech signal
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Figure 3: Objective evaluation at 10-dB input SNR. (a): NRR
(b): KR, and (¢): CD

5. Speech Recognition Experiment

5.1 Experimental Condition

In this section, we evaluated the speech recognition per-
formance for HRNR. We used 200 speakers (100 males and
100 females) for the target speech signals. Also, we com-
pared the speech recognition performance of HRNR with
those of WEF, SS, MMSE-STSA estimator, HRNR, clean
speech signals, and unprocessed signals. Other experimen-
tal conditions are the same in section 4.3.

5.2 Speech Recognition Result

Figures 5 and 6 show the result of the speech recognition
performance. From Figs. 5 and 6, we can confirm that the
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Figure 4: Objective evaluation at 15-dB input SNR. (a): NRR
(b): KR, and (¢): CD

speech recognition performance of the signals suppressed by
SS is improved a lot by HRNR technique compared with the
signals suppressed by WF or MMSE-STSA estimator case.
Consequently, HRNR technique is effectual using SS.

6. Conclusion

In this paper, we evaluated the sound quality of the signal
processed by HRNR for various noise reduction techniques.
From the objective evaluation, the variation of NRR by apply-
ing HRNR is little, and the scores of KR and CD are improved
by applying HRNR in almost all the cases. Also, from the
speech recognition experiment, we can confirm that applying
HRNR leads to the improvement of the speech recognition
performance in almost all the cases.. We concluded that SS
is particularly effective for HRNR in various noisy environ-
ment.

Acknowledgment

This work was supported by Grant-in-Aid for Young Scien-
tists (B) 16K21579.

References

[1] C. Plapous, C. Marro and P. Scalart, “Improved signal-
to-noise ratio estimation for speech enhancement,” IEEE
Transactions on Acoustics, Speech and Signal Process-
ing, vol.14, no.6, pp.2098-2108, 2006.

= Unp

rocessed signal

[ Clean speech signal

EXA WF
EX3 WF+HRNR

SS
SS+HRNR

ZZA MMSE-STSA estimator
EZZ1 MMSE-STSA estimator+HRNR

Input SNR: 10 [dB]

70

Word correct [%]

2%

o
o

XK
2

<

s
XXX

UK,
detedete

e
%%
Setalels

oS ot
KSREERINK

[

3

(2]

(3]

(4]

N. Wiener, “Extrapolation,interpolation and smoothing
of stationary time series with engineering applications,”
Cambridge, MA: MIT Press, 1949.

S. F. Boll, “Suppression of acoustic noise in speech us-
ing spectral subtraction,” IEEE Transactions on Acous-
tics, Speech and Signal Processing, vol.27,no.2, pp.113—
120, 1979.

Y. Ephraim and D. Malah, “Speech enhancement us-

Noisy environment

Figure 5: Speech recognition performance in three noisy en-
vironments at 10-dB input SNR

mmm Unprocessed signal
[ Clean speech signal

EXA WF
EX3 WF+HRNR

=3 ss

[ZZ2 MMSE-STSA estimator
SS+HRNR

EZZ1 MMSE-STSA estimator+HRNR

Input SNR: 15 [dB]
70 ' R

Xl

J
o

OO
20e2atelelols

KA
4

-
%

,.
X

i

R

..
X%
s

Word correct [%]
%, o3
PoLols o2

;0

R

XXX
edede

e
kS

Railway statio Street White Gaussian

Noisy environment

Figure 6: Speech recognition performance in three noisy en-
vironments at 15-dB input SNR

ing a minimum mean-square error short-time spectral
amplitude estimator,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol.27, no.6, pp.1109—
1121, 1984.

[5] R. Miyazaki, et al., “Musical-noise-free speech enhance-
ment based on optimized iterative spectral subtraction,”
IEEE Transactions on Audio, Speech and Language Pro-

cessing, vol.20, no.7, pp.2080-2094, 2012.

L. Rabiner and B. Juang, “Fundamentals of Speech
Recognition,” Upper Saddle River, NJ: Prentice-Hall,
1993.

[7] K. Tto, et al., “Jnas: Japanese speech corpus for large
vocabulary continuous speech recognition research,” The
Journal of Acoustical Society of Japan, vol.20, pp.196—

206, 1999.

- 380 -





