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Relationship between internal parameters and sound quality
in biased harmonic regeneration technique

Masakazu UNE

This paper focuses on two representative problems of single-microphone noise reduc-
tion: speech distortion and musical noise. Many noise reduction techniques have been
proposed for each problem. For speech distortion, harmonic regeneration noise reduc-
tion (HRNR) has been proposed. The HRNR is a method to use a unique signal to
regenerate the eliminated harmonics, and improve the estimation accuracy of a priori
signal-to-noise ratio (SNR). I have proposed a new noise reduction method which ad-
dresses speech distortion and musical noise problems simultaneously by introducing bias
into a priori SNR estimator in HRNR, (biased HRNR). In this paper, I investigate the
behavior of each internal parameter of HRNR and biased HRNR toward speech quality
and show the effectiveness of biased HRNR in terms of speech distortion and musical
noise. As a result, I found that the bias introduced in the proposed HRNR does not
deteriorate the speech quality due to its high-quality noise reduction feature, in con-
sideration of the relation between the estimation accuracy of a priori SNR and speech
quality.
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1. Introduction noise reduction exists two critical problems, i.e., speech

distortion and musical noise *'¥. Speech distortion

Recent mobile phone has a speech recognition system causes the deterioration of the speech articulation and
and recording system including the voice memorandum speech recognition accuracy by suppressing the target sig-
as well as the verbal communication feature. In order to nal excessively. For the speech distortion problem, har-
utilize these systems comfortably, a problem due to the monic regeneration noise reduction (HRNR) has been pro-
background noise should be resolved. Many noise reduc- posed 319 The HRNR focuses on the fact that most of
tion techniques have been proposed for the problem 8. the speech distortion are harmonic components and over-
Multi-channel noise reduction methods such as based on come this problem by estimating a priori signal-to-noise
beam-forming ! and source separation 2 need many mi- ratio (SNR) using a unique signal to restore the harmonics.
crophones. Moreover, the inverse matrix calculation is As another problem, musical noise makes the output
needed for treating the plural microphone inputs and leads speech unnatural and humans uncomfortable. Then, some
to instability of the applications. Thus, they are not ap- methods which suppress noisy signal without generating
propriate for the mobile phone in terms of the cost or musical noise have also been proposed '’~'?. These meth-
the scale. On the other hand, single-channel noise reduc- ods (called musical-noise-free speech enhancement) are
tion 3% is low cost, small scale, and small computational used for systems that human listens to 22D, In par-
complexity. For this reason, single-channel noise reduc- ticular, musical-noise-free speech enhancement based on
tion is significant to communicate or record a message minimum-mean square error short-time spectral ampli-
using the small-sized device. tude (MMSE-STSA) estimator (hereafter referred to as a
However, the output speech obtained by single-channel musical-noise-free MMSE-STSA estimator) '® achieves
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lower speech distortion than that based on spectral sub-
traction 7. In the literature '3, Nakai, et al. introduced
bias factor into a classical a priori SNR estimator > and
succeeded in suppressing the musical noise generation. I
have introduced a bias into a priori SNR estimation in
HRNR and proposed a new noise reduction technique (bi-
ased HRNR) which can achieve lower speech distortion
than musical-noise-free MMSE-STSA estimator and no
musical noise generation 22,

As I'have mentioned above, a priori SNR is estimated by
using a unique signal to restore the harmonics in HRNR
process or introducing bias in biased HRNR process. The
speech quality notably depends on the estimated a priori
SNR ?». HRNR and biased HRNR have the internal
parameters '>2%), the internal parameters determine the
estimation accuracy of a priori SNR and the speech quality.
In 2%, the relationship between the internal parameters
and the speech quality have demonstrated in extremely
limited condition. Revealing the relationship will be the
foundation to discover optimal parameters 2429,

In this paper, I investigate the relationship between the
internal parameters and speech quality in HRNR and bi-
ased HRNR exhaustively. Also, I consider the relationship
between the estimation accuracy of a priori SNR which is
determined by the internal parameters, and speech quality.

This paper is organized as follows. In Sec. 2., I show
the common noise reduction process and HRNR to over-
come the speech distortion problem. In Sec. 3., I explain
biased HRNR I have proposed and the a priori SNR esti-
mator. In Sec. 4., I demonstrate the relationship between
the internal parameter and the sound quality in the clas-
sical a priori SNR estimator, HRNR, and biased HRNR.
Finally, in Sec. 5., I present the behavior and the estima-
tion accuracy in each a priori SNR estimator and discuss
the relationship between the estimation accuracy and the

sound quality.

2. Noise reduction methods and a priori SNR es-
timation

In this section, I explain the classical a priori SNR estima-
tor and MMSE-STSA estimator proposed by Ephraim and
Malah. The MMSE-STSA estimator takes advantage of
this a priori SNR estimator. I also explain HRNR which

has been proposed to overcome the speech distortion.
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2.1 Classical a priori SNR estimator

An observed speech in the time domain x(¢) is given by
x(t) = s(t) + n(@), M

where s(¢) and n(¢) are clean and noise speech, respec-
tively. Applying the short-time Fourier transform (STFT)
into Eq. (1), k th spectral component (0 < k < K) of short-
time frame p (0 < p < P) of the observed speech X (p, k)

is expressed by
X(p, k) = S(p. k) + N(p, k), 2

where S(p, k) and N(p, k) represent the clean and the
noise speech spectra, respectively. Hereinafter, I omit the
component k and the time frame p unless otherwise stated.
Actually, the only X is obtained in a real environment.
Generally, the estimate of the clean speech $ is obtained
by multiplying an appropriate spectral gain G by observed
speech X as follows:

§=aGx. 3)

Spectral gains in common noise reduction techniques such
as Wiener filter ¥ and MMSE-STSA estimator ) are ex-
pressed as a function of a priori SNR ¢ and a posteriori
SNR vy:

G=g(&7), “)

where g(+,-) is the spectral gain function. The a priori
SNR ¢ and the a posteriori SNR 1y are respectively defined
by
E[1sP]
&= — 71— 5
E[INP]
and
X2
Y= |—|2, (6)
E[IN?]

where E [-] is the expectation operator. E [IN |2] is approx-

2
imated by expected value E |N ) ] of speech absent (noise

only) area up to frame 7, i.e.,

T
E[ING. 0P| ~ B[] = 2 Y x@nr. o)
=0

The a priori SNR £ is not able to obtain in a real environ-
ment, thus, it is estimated using decision-directed (DD)

approach ) as follows:

8- Lo

e[}

éDD(p, k)=a + (1 —a)Max [y(p, k) — 1,0],

@®)
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Fig. 1: Brock diagram in HRNR. First step indicates common noise reduction process and output is obtained in second step.

where the internal parameter « is a forgetting factor which
controlls the sound quality and is better to set to 0.98 >,

and Max [a, b] returns the larger value.
2.2 MMSE-STSA estimator

The MMSE-STSA estimator minimizes the error between
the true and estimated speech in amplitude domain >. The
spectral gain in MMSE-STSA estimator is expressed as a
function of a priori SNR ¢ and a posteriori SNR vy:

3 1
een =Yr (—)M (——; 1;—v), ©)
y 2 2
¢
=T (10)

where I'(-) and M (a; b; z) are gamma and Kummer func-
tions, respectively. I estimate the a priori SNR from

Eq. (8), the final output speech Ssrsa is calculated from

Sstsa = GstsaX = g(€PP,9)X. (11)

2.3 HRNR

Approximately 80 % of the pronounced words are voiced
sound in a human language. It is known that the power
spectrum of the voiced speech decreases as the higher fre-
quency. Due to the small power of the voiced sound, the
components in the bandwidth are regarded as noise and
suppressed. HRNR focuses on this point and regenerates
the higher frequency components (harmonics) mainly sup-
pressed to resolve the speech distortion '3, Figure 1 shows
the block diagram in HRNR. There are two noise reduction
steps in HRNR process. The temporal estimation of the
speech signal S is obtained by the classical noise reduc-
tion method such as MMSE-STSA estimator in the first
step (mentioned in Sec. 2.2). Next, I apply the temporal

estimated signal to the following non-linear function and

obtain the restored signal Sharmo as follows:
Sharmo = 7 [Max [~ [8].0]]. (12)

where F [-] and ! [-] respectively indicate the Fourier
and the inverse Fourier transforms. The restored sig-
nal Sharmo Which regenerates the pseudo spectrum of the
original speech cannot be used directly since contains an
unnatural spectrum not in the original one. However, the
restored signal has useful information for the harmonic
components. The new a priori SNR £HRNR jg re_estimated
by

A2
p[8[+(1 = p) Sharmol?
e[

using the restored signal and the weighting fac-

SHRNR _

13)

tor p (0 < p < 1) which corresponds to the internal
parameter in HRNR. Moreover, the weighting factor p is
better to set to the spectral gain which is obtained in the
first step ). In other words, if the noise reduction method
is MMSE-STSA estimator, let p be Gstsa which is com-
puted by Eq. (9). To distinguish between the case for the
spectral gain and one for the constant value, I define the

former case as

12
A G|S +(1 - G) |Sharm0|2
;E,NR = | — , (14)
e l4f ]
and the latter case as
13[° +(1 = ) Iharmol®
ZHRNR _ P P harmo (15)

const - ~A12
e [1¥f]

Finally, I obtain the new spectral gain and the output in
HRNR by using the new a priori SNR such as Eq. (11),

ie.,

Surnk = Gurar X = g(EMRNR 9) X (16)
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3. Biased HRNR

It is generally known that introducing the bias into the DD
algorithm leads to suppression of the musical noise gener-
ation '9. The biased HRNR is a method to overcome the
speech distortion and musical noise generation problems
by introducing bias into a priori SNR estimator in HRNR.
Three types are given in the way as introducing bias when
I change the a priori SNR estimator in HRNR. The first
type sets to the bias in the first term (called / term):

2

A

R Sharmol”
£ = o Max | 7| (1= gy el )
EIo1] e Iaf]
the second type sets in whole the equation:
/| 6f? ’ 2
bl o' |3+ = p') Sharmol®
EVNOC = Max L&', (18)

E [|N

]
and the third type replaces the first term by biased
maximum-likelihood term:

, IShz\rm0|2

=p'Max [y - L&' +(1-p") —-
i[5t ]

Here, p’ (0 < p’ < 1) and &’ represent the weighting

EME (19)

factor and the bias value, respectively. In this paper, I
adopted the Iterm version £'™ as the representative of
a priori SNR estimator in the biased HRNR since no dis-
tinct differences were found among these estimators in the

preliminary study. To distinguish between the case for the

£lterm
const

spectral gain éé;?ﬁm and one for the constant value

in a priori SNR estimator as well as HRNR, namely,

2

R S Sharmol?

e = G Max [ 41— gy mmel )
e ||4f ] E 4[]

. 3 | Sharmol®

£l = p'Max | ———. &' | +(1 - p/)T===. (1)
E“N| E[N ]

4. Behavoir between internal parameter and
sound qulity

In Sec. 2., I described a priori SNR estimators in HRNR.
I also explained the biased HRNR in Sec. 3.. Each sound
quality is decided by adjusting the internal parameters.
However, the relationship between the internal parameters
and the sound quality is not revealed in detail. In this sec-

tion, I experimentally investigate the relationships among
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the noise reduction level, the musical noise generation,

and the speech distortion.

4.1 DD approach and HRNR

DD approach decides the sound quality by the forgetting
factor & 2®. Tt is supposed that the output in HRNR
depends on the forgetting factor « since DD approach is
used in the first step in HRNR (see Fig. 1). I examine the
sound qualities by adjusting the forgetting factor « in the
DD approach and the weighting factor p in HRNR.

The observed signals were generated by adding the bab-
ble noise (BB) or railway station noise (RS) with 10 dB
input SNR. The forgetting factor @ in Eq. (8) was set from
0.00to0 0.99. In HRNR, the gain function of MMSE-STSA
estimator was adopted in the first noise reduction step and
the weighting factor p in Eq. (15) was set from 0.0 to 1.0.
The forgetting factor a in PP was set 0.5, 0.7 and 0.98.
Additionally, I also examined a case that p is replaced as
the spectral gain G in the first step, i.e., égllﬁjNR in Eq. (14)
was used as a priori SNR estimator in HRNR. I calculated
the noise reduction level, the musical noise generation,
and the speech distortion of each output signal with the
following objective measurements.

Noise reduction rate (NRR) is a measure of noise reduc-
tion level !” and higher NRR indicates the higher SNR im-
provement. NRR is computed as the defference between

the input and the output signal as follows:

E [I5oul?] /E [Inou?]

NRR = 10log g - [|Sin|2] /E [lnin|2]

, (22

where sj;, and so are the input and the output speech
signals, and ny, and ng,y are the input and the output noise
signals, respectively.

Next, kurtosis ratio (KR) 27 which quantifies the musi-
cal noise generation is defined by

: Ilifr—tfg 23)

where Kurto, and Kurtp are kurtosis of the original and
the processed signals, respectively. The small KR (> 1.0)
indicates the few musical noise generations, and KR less
than 1.0 means no generation of musical noise (refer to
musical-noise-free condition).

Finally, I introduce cepstral distortion (CD) for mea-

28)

surement of speech distortion Using the cepstral

coefficients of the clean speech Cir and the processed



WA T A EREEEILEAMNIC BT 2 NER 5 A =%

HHOBMREOHE

« DD s HRNR (a=0.5) 0

A HRNRin p=G case (¢ =0.5)

HRNR (a =0.7) °
A HRNRinp=G case (a=0.7)

HRNR (a = 0.98)
A HRNRin p=G case (a =0.98)

BB with 10 dB input SNR

RS with 10 dB input SNR

1.6 1.6 *
(a) (b) ‘
1.4 1.4 Lt
° ° ° *
=) * * - =] x ¥
© * © FPOeES B *
wl?2 wl?2
8 A 3 A
£ s e
<10 ¥1.0
0.8 Musical-noise-free condition 0.8 Musical-noise-free condition
15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22
Noise reduction rate [dB] Noise reduction rate [dB]
4 BB with 10 dB input SNR 4 RS with 10 dB input SNR

Cepstral distortion [dB]
N
m |
T

S

=2

g

<

(d)

w

* F’.

=

Cepstral distortion [dB]
N

*
*
TS * ¥
oo O

Noise reduction rate [dB]

0].5 16 17 18 19 20 21 22

)
(9)]

16 17 18 19 20 21 22
Noise reduction rate [dB]

Fig. 2: Results of sound quality by adjusting each internal parameter in DD approach and HRNR. KR versus NRR (top) in (a) BB
and (b) RS with 10 dB input SNR. CD versus NRR (bottom) in (c) BB and (d) RS with 10 dB input SNR.

speech Coy, CD is calculated by

20 - | i
D:m%m; ;%%Mﬁ—%wwu o4)

where B is a dimension of the cepstrum. All signals used
in this experiment were sampled as 16 kHz. The hamming
window (512 width and 25 % overlap) was applied in the
STFT. I provided the speech absent period for computation
of the KR. A dimension of the cepstrum B in Eq. (24) was
set to 22.

Figures 2 (a) and (b) show the results of KR versus
NRR. Some large symbols indicate that each parameter
is equal to zero. From Figs. 2 (a) and (b), in terms of
the DD approach (the star behavior), NRR increases as
increasing the forgetting factor @. In the constant parame-

ter case £HRNR

const . (the grey and quadrate, rhomboid or round

behaviors), the KR depends on the forgetting factor @ in
the first step. Namely, the tendencies of the weighting fac-
tor p are painted in the higher NRR area if the forgetting
factor « is large. Moreover, NRR decreases as increasing
the weighting factor p. On the other hand, in the case for

N

the spectral gain (£5%), the sound quality is not better

than the constant parameter case which parameter is small

in terms of NRR and KR. In a comparison between the
DD approach and HRNR, I clarify that HRNR is effective
in musical noise generation terms.

Next, Figures 2 (c) and (d) show the results of CD ver-
sus NRR. Cepstral distortion correspondingly rises when
the forgetting factor « increases in the DD approach. The
tendencies of the weighting parameter p depend on the
forgetting factor « as well as the result of KR versus NRR.
Cepstral distortion decrease in the part of the low weight-
ing parameter p and rapidly increases from a certain point.
Since this tendency was found in another condition, I can
consider the existence of the optimal value. However, a
point of g—cglﬁ]NR
parameters. Hence, I conclude that using spectral gain in
a priori SNR estimator in HRNR is the best to keep the

marked in the lowest CD of any constant

speech distortion low.
4.2 HRNR and biased HRNR

I described the effectiveness of HRNR in Sec. 4.1. Next,
I investigate the relation between the sound quality and
the internal parameters of HRNR and biased HRNR. Bi-
ased HRNR has two internal parameters (the weighting

L1 R
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Fig. 3: Results of sound quality by adjusting each internal parameter in HRNR and biased HRNR. KR versus NRR (top) in (a) BB
and (b) RS with 10 dB input SNR. CD versus NRR (bottom) in (c) BB and (d) RS with 10 dB input SNR.

factor p’ and the bias £’). The weighting factor p’ was
fixed to 0.1 or 0.9. T increased the bias value from 0.0 to
1.0. The value of the forgetting factor « as the first step in
biased HRNR was set to 0.7 and 0.98. Other conditions
were the same as Sec. 4.1.

I show the behavior of KR by adjusting the internal pa-
rameters in Figs. 3 (a) and (b). NRR and KR decrease with
the increase of bias value (see the black and white sym-
bols). The biased HRNR suppress the musical noise gen-
eration in the same NRR condition. In the constant param-
in biased HRNR (the black or white round

symbols and quadrate symbols), some symbols reach KR

eter case £!em
less than 1.0 (musical-noise-free condition) not depending
on the weighting parameter p’. Furthermore, the weight-
ing parameter p’ is effective to set to lower value because
the higher NRR is better. On the other hand, the tendency

of the case with the spectral gain (éé;‘f{lm

) is similar to the
one of constant parameter case, but, the points which KR
is lower than 1.0 do not exist when noise reduction level
is low (i.e., forgetting factor is low). Therefore, the noise
reduction level in first step is necessary to large, so that the

output in £/'™ can achieve musical-noise-free condition.

gain

No.23 (2019)

Figures 3 (c) and (d) show the tendency by changing
each parameter in CD versus NRR. NRR and CD de-
crease by introducing the bias and biased HRNR prevent
the speech distortion compared with HRNR because CD
of biased HRNR is lower than in HRNR. Each tenden-
cie in biased HRNR maintains the magnitude correlation
and the NRR at (p’,&") = (0,0) in £/©™ is higher than
one at ¢’ = 0.0 in §g1;‘f{1m In biased HRNR, the constant

term \which is small value more effec-

parameter case &}

£lterm
gain

tive performance than a case using spectral gain & in
terms of the speech distortion. As a result, biased HRNR
is high-quality noise reduction technique comprehensively
compared to HRNR and DD approach, and the weighting

parameter is effective to use the lower constant value p’.

5. Relationship between sound quality and accu-
racy of a priori SNR

I described the effectiveness of HRNR in Sec. 4.1 and
biased HRNR is higher-quality method compared with
HRNR in Sec. 4.2. The superiority or inferiority of the
sound quality in these methods is only decided by the

difference in a priori SNR estimator. From the results in



Sec. 4.1 and Sec. 4.2, I can set up a hypothesis that the high-
quality noise reduction method can accurately estimate a
priori SNR. Therefore, I investigate the accuracies in each

method and discuss the previous hypothesis in this section.

5.1 Observation of behavior of estimated a priori
SNRs

First, I observe the estimated a priori SNR details in be-
havior in this section. The observed signal was made by
mixing BB with the clean speech at 10 dB input SNR.
True a priori SNR was computed by Eq. (5) assuming that
clean and noise signals are known. In order to achieve
20 dB NRR in each method, the forgetting factor @ in DD
approach was set to 0.97, the weighting factor p in HRNR
was set to 0.04, and the weighting factor p’ and bias &’ in
biased HRNR were set to 0.1 and 0.8, respectively. Other
experimental conditions were the same as Sec. 4.1.

Figure 4 shows the result of the behavior of the esti-
mated a priori SNRs. Figures 4 (a) and (b) represent each
the estimated a priori SNR in a frame and a frequency
bin, respectively. First, I compare true a priori SNR and
one by the DD approach. The behavior in DD approach
tracks the true one in the lower position (i.e., underestima-
tion). In particular, the underestimation is outstanding at
high-frequency (around 4 kHz) in Fig. 4 (b). The under-
estimation leads to the speech distortion and the harmonic
distortion in high frequency part. Additionally, the tran-
sition of the behavior by DD approach is slow. This phe-
nomenon is caused by smoothing down using the previous
frame at the estimation, the delay is occurred in an area
from speech absent to speech presence and produces the
underestimation. Therefore, I confirm the a priori SNR
estimator of the DD approach triggers the underestimation
leading to the speech distortion.

Next, I compare the true a priori SNR and one by
HRNR. From Figs. 4 (a) and (b), HRNR estimates a pri-
ori SNR excessively (i.e., overestimation). Although the
overestimation is caused by a restored signal Sharme Which
regenerates the pseudo spectrum of the harmonics, the
signal Sharmo has the harmonics based on the suppressed
spectrum S. Namely, the protrusions in DD approach and
HRNR mostly synchronize.

Finally, I consider the effect of bias in biased HRNR.
Biased HRNR overestimates a priori SNR when true one
is small (see the 200 th frame in Fig. 4 (b)). However, the

overestimation by bias does not lead to the deterioration of
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the speech quality since biased HRNR is the best perfor-
mance in the methods I mentioned from the experiments
in Sec. 4.1 and Sec. 4.2.

5.2 Objective evaluation of amounts of overestima-
tion and underestimation

To support the conjecture regarding overestimation and
underestimation I stated in Sec. 5.1, I investigate the obser-

vation result objectively. The observed signals were mixed
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BB, RS, street noise (ST), or white Gaussian noise (WG)
with the clean speech at 0 and 10 dB input SNRs. Log-
error (LogErr) was used as the measurement of the amount
of the estimation error. LogErr is calculated as the sum of
the amounts of underestimation LogErr, and overestima-

tion LogErr,,, i.e

LogErr = LogErr + LogErr,,, (25)
k
LogErt,, = [ Epk) o] ‘ (26)
Y.k
_ E(p k)
LogErr,, = —ZM loglo 2 0], 27)
p.k ’

where Min [a, b] returns the smaller value. I obtained the
a priori SNRs by DD approach, HRNR, biased HRNR,
and computed each LogErr with respect to true one. Each
parameter was set to achieve the same NRR.

Figure 5 shows the results of LogErr in various noisy
environments. Many large underestimations occur in DD
approach, and this outcome corresponds to the result in
Fig. 4. Next, HRNR suppresses the amount of under-
estimation compared to DD approach; however, HRNR
overestimates a priori SNR more largely. This result also
matches the result in Fig. 4. Finally, biased HRNR in-
creases the total error compared to other methods. HRNR
and biased HRNR keep the amount of underestimation low
and speech distortion is prevented. Biased HRNR reduces
the amount of underestimation relative to HRNR, espe-
cially. I consider the effect is caused by bias. The result
that the amount of the overestimation in biased HRNR is
large agrees with the result in Sec. 5.1. However, Sec. 4.2
and Sec. 5.1 have mentioned biased HRNR is comprehen-
sively high-quality noise reduction method; therefore, the
overestimation by bias does not degrade the speech qual-

ity. Rather, introducing bias leads to a favorable result.

5.3 Discussion

The fact I mentioned in Sec. 5.2 gives some tasks. As an
obvious case, if a true a priori SNR is used in Eq. (11), I
can obtain the significantly high-quality output. A priori
SNR close to a true one is better, intuitively. However, 1
have indicated introducing bias improves the speech qual-
ity even if the estimation accuracy declines. Introducing
bias is the representative instantiation as one of the factors.

Many a priori SNR estimators which outperform the DD
approach have been proposed >*-3% and consider compen-

sation for frame delay, adaptivizing the forgetting factor,
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or its optimization. These methods mainly focus on the
speech distortion problem; hence, it is important to an-
alyze the effects including the musical noise problem in
each method. Elucidation of the special factors includ-
ing bias, not the estimation accuracy, can be used in the
selection of an optimal loss function for the deep neural
network.

6. Conclusion

In this paper, I investigated the relationship between the
internal parameters and the sound qualities of HRNR and
biased HRNR exhaustively. In addition, I compared these
estimation accuracies of a priori SNR and a true a priori
SNR.

In Sec. 4.1, HRNR is effective compared to the DD ap-
proach. The internal parameter is better to set to the small
constant value in terms of the musical noise problem. In
contrast, speech distortion is low in case that the internal
parameter is set spectral gain. Next, in Sec. 4.2, I showed
biased HRNR is higher-quality noise reduction technique
than HRNR. Additionally, I confirmed that introducing
bias reduces the speech distortion and musical noise gen-
eration in biased HRNR and the weighting parameter is
more effective to set to small constant value.

Finally, in Sec. 5.1 and Sec. 5.2, I confirmed a priori
SNR estimator in HRNR prevent the underestimation and
suppress the speech distortion. Biased HRNR also pre-
vents the underestimation by the bias and the amount of
the overestimation increases. However, I concluded the
bias does not deteriorate the speech quality since biased

HRNR is high-quality noise reduction method.
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