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This paper focuses on two representative single-microphone noise reduction problems: speech distortion
and musical noise. Many noise reduction methods have been proposed for each problem. Harmonic
regeneration noise reduction (HRNR) was introduced for the improvements of speech distortion and
the a priori signal-to-noise ratio (SNR) estimator. HRNR involves using a unique signal to regenerate har-
monics, which had been eliminated. Musical-noise-free noise reduction based on the minimum-mean
square error short-time spectral amplitude estimator (musical-noise-free MMSE-STSA estimator) has also
been proposed. This method can suppress a noisy signal without generating musical noise by introducing
a bias into the classical a priori SNR estimator. We propose a noise reduction method for addressing these
problems simultaneously by improving the classical a priori SNR estimator. We investigated the behavior
of the internal parameters for the proposed and conventional methods with regard to speech quality and
show the effectiveness of the proposed method in terms of speech distortion and musical noise. We con-
sider and discuss the relationship between the estimation accuracy of an a priori SNR and speech quality.
Specifically, we consider the factors to improve speech quality in terms of biasing.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent mobile phones have speech-recognition and recording
systems that include voice memorandum as well as a verbal com-
munication function. To effectively use these systems, significant
problems due to background noise should be resolved. Many noise
reduction methods have been proposed for solving such problems
[1–8]. Multi-channel noise reduction methods, such as those based
on beam-forming [1] and source separation [2], require many
microphones; thus, they are not appropriate in terms of cost and
scale. Inverse matrix calculation is also required for treating the
spatial characteristics of each microphone input, which leads to
system instability. Single-channel microphone noise reduction
methods [3–8], however, are low cost, small in scale, and have
low computational complexity. For this reason, single-channel
microphone noise reduction is essential to communicate or record
a message using a small device. However, the output speech with
these methods results in two critical problems, i.e., speech distor-
tion and musical noise [9–14]. Speech distortion makes listening
difficult and reduces speech-recognition accuracy by excessively
suppressing the target signal. Minimum-mean square error
short-time spectral amplitude (MMSE-STSA) with harmonic regen-
eration noise reduction (HRNR) was proposed for the speech-
distortion problem [15–18]. Since a kind of speech distortion can
be discussed as harmonics, which are removed by excessive noise
suppression, HRNR aims to restore these components for high-
quality noise reduction and prior SNR estimation [15,16,19,20].
MMSE-STSA estimator with HRNR focuses on the fact that most
speech distortions are harmonic component distortions, which
are overcome by estimating the a priori signal-to-noise ratio
(SNR) using a unique signal to restore the harmonics. The name
‘‘HRNR” originally refers to the noise reduction method, but Pla-
pous et al. mainly focus on a priori SNR estimation by a harmonic
[15,16]. For this reason, we treat the name ‘‘HRNR” as an a priori
SNR estimator in this paper.

Other methods for suppressing noisy signals without generat-
ing musical noise have also been proposed [21–23]. These meth-
ods, collectively called musical-noise-free noise reduction theorem,
are used for systems that humans use to listen [24,25]. In particu-
lar, the musical-noise-free noise reduction method based on the
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MMSE-STSA estimator (this method is called the musical-noise-
free MMSE-STSA estimator) results in lower speech distortion than
spectral subtraction based on that [21]. Nakai et al. introduced a
bias factor into the classical a priori SNR estimator and succeeded
in suppressing musical noise generation. Many noise reduction
methods, including HRNR, focus on a priori SNR estimation [26–
30]. These methods are based on the most classical a priori SNR
estimator proposed by Ephraim and Malah [5], which takes into
account compensation for frame delay and adapts to the forgetting
factor or its optimization so that the estimated a priori SNR is close
to the true one. On the contrary, the musical-noise-free MMSE-
STSA estimator places more importance on the perception of musi-
cal noise than accurate a priori SNR estimation.

We propose a noise reduction method that applies the biasing
concept of the musical-noise-free MMSE-STSA estimator to HRNR
(we call this a priori SNR estimator biased HRNR and our method
MMSE-STSA estimator with biased HRNR). Biased HRNR suppresses
speech distortion futher than HRNR and generates no musical
noise, the same as the musical-noise-free MMSE-STSA estimator.
We first experimentally investigated the tendency of musical noise
generation and speech distortion by adjusting the internal param-
eters of HRNR. Our MMSE-STSA estimator with biased HRNR can
meet the condition in which musical noise is not generated. We
then investigated the behavior of the estimated a priori SNR by
each estimator and described the contribution of biasing. Finally,
we compared our MMSE-STSA estimator with biased HRNR with
conventional methods and found that our method suppresses
speech distortion without generating musical noise.

This paper is organized as follows. In Section 2, we discuss the
relationship among standard noise reduction processes and con-
ventional a priori SNR estimators including HRNR. In Section 3,
we introduce biased HRNR as a new a priori SNR estimator to
decrease of the amounts of speech distortion and musical noise.
We also discuss the relationship among the internal parameters,
sound quality, and the estimation accuracy of a priori SNR for each
a priori SNR estimator. Next, we discuss the objective evaluations
we conducted to show the effectiveness of our MMSE-STSA estima-
tor with biased HRNR compared to conventional methods in Sec-
tion 4. Finally, we conclude this paper in Section 5.

2. Related works

In this section, we explain the classical a priori SNR estimator
and the MMSE-STSA estimator proposed by Ephraim and Malah.
We also explain the MMSE-STSA estimator with HRNR and
musical-noise-free MMSE-STSA estimator, which were proposed
to overcome speech distortion and musical noise generation,
respectively.

2.1. Classical noise reduction and a priori SNR estimator

An observed speech in the time domain x tð Þ is given by

x tð Þ ¼ s tð Þ þ n tð Þ; ð1Þ
where s tð Þ and n tð Þ are clean and noise speech signals, respectively.
Applying the short-time Fourier transform (STFT) into Eq. (1), the k
th spectral component (0 6 k 6 K) of short-time frame p (0 6 p 6 P)
of the observed speech X p; kð Þ is expressed by

X p; kð Þ ¼ S p; kð Þ þ N p; kð Þ; ð2Þ
where S p; kð Þ and N p; kð Þ represent the clean and noise speech spec-
tra, respectively. Hereafter, we omit components p and k unless

otherwise stated. Generally, the estimate of the clean speech bS is
obtained by multiplying an appropriate spectral gain G by observed
speech X as follows:
bS ¼ GX: ð3Þ
Spectral gains with common noise reduction methods, such as
Wiener filter [4] and MMSE-STSA estimator [5], are expressed as a
function of an a priori SNR n and a posteriori SNR c:

G ¼ g n; cð Þ; ð4Þ
where g �; �ð Þ is the spectral gain function. The n and c are respec-
tively defined by

n ¼
E Sj j2
h i

E Nj j2
h i ; ð5Þ

and

c ¼ Xj j2

E Nj j2
h i ; ð6Þ

where E �½ � is the expectation operator, and E Nj j2
h i

is approximated

by the expected E bN��� ���2� �
of the speech-absent (noise only) area up

to frame T, i.e.,

E N p; kð Þj j2
h i

� E bN��� ���2� �
¼ 1

T

XT�1

s¼0

X s; kð Þj j2: ð7Þ

The n cannot be obtained in a real environment; thus, it is estimated
using the decision-directed (DD) approach [5] as follows:

n̂DDa p; kð Þ ¼ a
bS p� 1; kð Þ
��� ���2
E bN p; kð Þ

��� ���2� �þ 1� að ÞMax c p; kð Þ � 1;0½ �; ð8Þ

where internal parameter a is a forgetting factor that controls the
sound quality and is best set to 0:98 [5], and Max a; b½ � returns a lar-
ger value. We specify the components p and k because Eq. (8) needs
the current frame p and the previous frame p� 1. Since the frame
delay generally deteriorates the quality of the output, many a priori
SNR estimators for solving this problem have been proposed [26–
30].

It is well known that the MMSE-STSA estimator is a classical
noise reduction method and it minimizes the error between the
true and estimated speech in the amplitude-spectrum domain
[5]. The spectral gain of the MMSE-STSA estimator is expressed
as a function of n and c:

gSTSA n; cð Þ ¼
ffiffiffi
m

p
c

C
3
2

� �
M �1

2
;1;�m

� �
; ð9Þ

m ¼ n
1þ n

c; ð10Þ

where C �ð Þ andM a; b; zð Þ are gamma and Kummer functions, respec-
tively. We estimate the a priori SNR n from Eq. (8), and the final out-

put speech bSDD is calculated from

bSDD ¼ GDDX ¼ gSTSA n̂DDa ; c
� 	

X: ð11Þ
2.2. MMSE-STSA estimator with HRNR

Approximately 80% of pronounced words are voiced in human
languages. It is well known that the power spectrum of a voiced
sound decreases as the frequency increases. Due to the small
power of a voiced sound, the voiced sound’s components are
regarded as noise and suppressed, especially in high bandwidth.
HRNR focuses on this point and regenerates the higher-frequency
components (harmonics) mainly suppressed to resolve speech dis-
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tortion [16]. Fig. 1 shows a block diagram of the MMSE-STSA esti-
mator with HRNR; there are two noise reduction steps. Originally,
HRNR means the noise reduction process, but we define HRNR as a
priori SNR estimator to avoid confusion in this paper. First, we
obtained the temporal estimated signal by applying the classical
noise reduction as the first step in Fig. 1. Next, the temporal esti-
mated signal is applied to the following non-linear function, and

the restored signal Sharmo is obtained in the second step in Fig. 1
as follows:

Sharmo ¼ F Max F�1 bSh i
;0

h ih i
; ð12Þ

where F �½ � and F�1 �½ � indicate the Fourier and inverse Fourier trans-

forms, respectively. The Sharmo, which regenerates the pseudo spec-
trum of the original speech, cannot be used directly since it contains
an unnatural component, not the original component. However,

Sharmo has useful information for the harmonic components. The
new a priori SNR n̂HRNR

q is re-estimated by

n̂HRNR
q ¼

q bS��� ���2 þ 1� qð Þ Sharmo
��� ���2

E bN��� ���2� � ; ð13Þ

using Sharmo and the weighting factor q (0 6 q 6 1), which corre-
sponds to the internal parameters of HRNR. Moreover, q is best
set to the spectral gain, which is obtained in the first step [16]. In
other words, if we use the MMSE-STSA estimator as the noise
reduction method in the first step, let q be G, which is computed
using Eq. (11). Also, the form which replaces q with spectral gain
G is expressed as

n̂HRNR
G ¼

G bS��� ���2 þ 1� Gð Þ Sharmo
��� ���2

E bN��� ���2� � : ð14Þ

Finally, we obtain the new spectral gain and output from MMSE-
STSA estimator with HRNR by using the new a priori SNR n̂HRNR

q such
as Eq. (11), i.e.,

bSHRNR ¼ GHRNRX ¼ gSTSA n̂HRNR
q ; c

� 	
X: ð15Þ
2.3. Musical-noise-free speech enhancement based on biased DD
approach

The kurtosis ratio (KR) was proposed [31] as an objective mea-
sure for musical noise generation. The KR is defined by
kurtproc=kurtorg, where kurtproc and kurtorg are the kurtosis of the
processed and observed signals, respectively. Musical noise is
Fig. 1. Block diagram of MMSE-STSA estimator with HRNR. First step indicates commo
estimated by restored signal Sharmo.
perceived as the tail in terms of the probability density function
in the power-spectral domain, and kurtosis represents the tail of
the distribution. The increase in kurtosis by nonlinear signal
processing generates musical noise. Namely, the KR is used to eval-
uate the amount of musical noise. A large KR (> 1:0) indicates
more generation of musical noise and a small KR (< 1:0) indicates
no generation of musical noise (musical-noise-free condition). The
musical-noise-free noise reduction method generates almost no
musical noise even with high noise reduction. Miyazaki et al.
established the musical-noise-free theorem for spectral subtrac-
tion and Wiener filtering as single-channel microphone noise
reduction [21]. They also extended the theorem to multi-channel
for dealing with nonstationary noise [32]. Although these methods
can suppress noise without musical noise generation, the amount
of speech distortion is large. Also, Kanehara et al. revealed the
theoretical relationship between the amounts of noise reduction
and musical noise generation in the MMSE-STSA estimator and
concluded that no musical-noise-free condition exists regardless
of the value of the internal parameters [33–35]. On the other hand,
Nakai et al. discovered the existence of the musical-noise-free
condition in the MMSE-STSA estimator for the biased a priori
SNR n̂B�DD

a;e [22], which suppressed speech distortion further than
the conventional musical-noise-free methods. The biased a priori
SNR n̂B�DD

a;e is computed to provide the bias factor in the term of
maximum likelihood estimation in Eq. (8) and is given by

n̂B�DD
a;e p; kð Þ ¼ a

jbS p� 1; kð Þj2

E jbN p; kð Þj2
h i þ 1� að ÞMax c p; kð Þ � 1; e½ �; ð16Þ

where e is the bias value. We specify p and k because Eq. (16) needs
the current frame p and previous frame p� 1. The same as in Eqs.
(11) and (15), we obtain the spectral gain and output of the
musical-noise-free MMSE-STSA estimator by using the new a priori
SNR n̂B�DD

a;e , i.e.,

bSB�DD ¼ GB�DDX ¼ gSTSA n̂B�DD
a;e ; c

� 	
X: ð17Þ
3. Proposed method based on biased HRNR

3.1. Overview

It is generally known that introducing a bias into the DD
approach suppresses musical noise generation [10]. Our MMSE-
STSA estimator with biased HRNR is used to overcome the speech
distortion and musical noise generation problems by introducing a
bias into HRNR. The process of the proposed method is illustrated
in Fig. 2. In this paper, we express the bias as the following
equation:
n noise reduction process, and second step outputs speech with new a priori SNR



Fig. 2. Block diagram of proposed method. Basic procedure is same as MMSE-STSA estimator with HRNR in Fig. 1. In second step, we re-estimate a priori SNR including bias.
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n̂B�HRNR
q0 ;e0 ¼ q0Max

bS��� ���2
E bN��� ���2� � ; e0

2
664

3
775þ 1� q0ð Þ

Sharmo
��� ���2
E bN��� ���2� � ; ð18Þ

Here, q0 (0 6 q0 6 1) and e0 represent the weighting factor and bias
value, respectively. Also, the form which replaces q0 with spectral
gain G is expressed as

n̂B�HRNR
G;e0 ¼ GMax

bS��� ���2
E bN��� ���2� � ; e0

2
664

3
775þ 1� Gð Þ

Sharmo
��� ���2
E bN��� ���2� � : ð19Þ

Finally, the output of the proposed method is obtained as follows:

bSB�HRNR ¼ GB�HRNRX ¼ gSTSA n̂B�HRNR
q0 ;e0 ; c

� 	
X: ð20Þ
3.2. Discussion on existence of musical-noise-free condition

In Section 2.2, we described the HRNR. We also explained
biased HRNR in Section 3.1. The sound qualities obtained using
HRNR and biased HRNR are determined by adjusting the internal
parameters. However, the detailed relationship between the inter-
nal parameters and sound quality has not been revealed. Moreover,
the existence of the musical-noise-free condition has not been clar-
ified. The aim of this section is to confirm the existence of this for
the MMSE-STSA estimator with HRNR and our MMSE-STSA estima-
tor with biased HRNR by adjusting their internal parameters. We
summarize the internal parameters of each method to clarify what
we show in Table 1.
Table 1
Summary of relationship among noise reduction methods, a priori SNR estimators,
biasing, and spectral gains.

Noise reduction
ethod

A priori SNR
estimator

Biasing Spectral gain

MMSE-STSA
estimator

n̂DDa NOT
Included

GDD ¼ gSTSA nDDa ; c
� 	

MMSE-STSA
estimator

n̂HRNR
q

NOT
Included

GHRNR ¼ gSTSA nHRNR
q ; c

� 	
with HRNR

Musical-noise-
free

n̂B�DD
a;e

Included GB�DD ¼ gSTSA nB�DD
a;e ; c

� 	
MMSE-STSA

estimator

MMSE-STSA
estimator

n̂B�HRNR
q0 ;e0

Included GB�HRNR ¼ gSTSA nB�HRNR
q0 ;e0 ; c

� 	
with biased

HRNR
3.2.1. DD approach and HRNR
The DD approach is used to determine sound quality by using

the forgetting factor a [33]. It is assumed that the output of the
MMSE-STSA estimator with HRNR depends on a since the DD
approach is used in the first step of this noise reduction method
(see Fig. 1). To determine the relationship between the internal
parameters and sound quality, we conducted an experiment by
adjusting a in the DD approach and weighting factor q in HRNR.

The observed signals were generated by adding babble noise or
railway station noise to the target speech from the JNAS database
[36] with a 10-dB input SNR. For DD, the a in Eq. (8) was set from
0.00 to 0.99. For HRNR, the a in Eq. (8) was set to 0.5, 0.7, and 0.98
as the first step of Fig. 1, and the q in Eq. (13) was set from 0.0 to
1.0 as the second step. We also examined a case in which q was
replaced with the spectral gain G obtained in the first step, i.e.,
n̂HRNR
G in Eq. (14) was used. We introduced two objective measure-
ments to evaluate the noise reduction level and speech distortion
of each output signal in addition to the KR as a measurement of
musical noise generation, as mentioned in Section 2.3.

The noise reduction rate (NRR) is a measure of noise reduction
level [21], and a higher NRR indicates significant SNR improve-
ment. The NRR is computed as the difference between the input
and output signals as follows:

NRR ¼ 10log10

E soutj j2
h i

=E noutj j2
h i

E sinj j2
h i

=E ninj j2
h i ; ð21Þ

where sin and sout are the input and output speech signals, and nin

and nout are the input and output noise signals, respectively. Cep-
stral distortion (CD) is used for measuring speech distortion [37].
By using the cepstral coefficients of clean speech Cref and processed
speech Cout, CD is calculated by

CD ¼ 20
P log 10

XP

p¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB
b¼0

2 Cout p; bð Þ � Cref p; bð Þð Þ2
vuut ; ð22Þ

where b is an index of the cepstral coefficient (0 6 b 6 B) and B is a
dimension of the cepstrum. All signals used in this experiment were
sampled at 16 kHz. The Hamming window (512 width and 25 %
overlap) was applied in the STFT. We provided the speech-absent
period for computing the KR. The B in Eq. (22) was set to 22.

Figs. 3 (a) and (b) show the results of the KR versus NRR. The
larger symbols indicate that each parameter is set to zero, i.e., large
I shows n̂DDa¼0 and large j;r, and � represent n̂HRNR

q¼0 when a is set to
0:5;0:7, and 0:98, respectively. The gray areas mean that the KR is
less than 1:0 (musical-noise-free condition). In terms of the DD
approach (star symbols), NRR increased as a increased. For the con-
stant parameter n̂HRNR

q (grey and quadrate, rhomboid or round
behaviors), the KR depended on a in the first step. Namely, the ten-
dencies of qwere plotted in the higher NRR area when awas large.



Fig. 3. Results of sound quality by adjusting each internal parameter of DD approach and HRNR. (a) and (b) indicate relationship between NRR and KR, (c) and (d) indicate
relationship between NRR and CD. Larger symbols indicate that each parameter is set to zero, i.e., large I shows n̂DDa¼0 and large j;r, and � represent n̂HRNRq¼0 when a is set to
0:5;0:7, and 0:98, respectively. Note that n̂HRNR

G has no adjusting parameters.
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Moreover, NRR decreased when q increased. For n̂HRNRG , however,

the sound quality was not better than that for n̂HRNRq in which the
parameter is small in terms of the NRR and KR. However, no plots
are in the gray areas in this figure. Although HRNR is more effective
in terms of musical noise generation than the DD approach, it is
limited in meeting the musical-noise-free condition.

Figs. 3 (c) and (d) show the results of CD versus NRR. CD corre-
spondingly increased when a increased with the DD approach. The
tendencies of q depended on a as with the results of the KR versus
NRR. CD decreased in the part of the low q and rapidly increased
from a certain point. Since this tendency was found under another
condition, we can consider the existence of the optimal value.
However, a point of n̂HRNRG is marked in the lowest CD of any con-
stant parameter. Hence, we conclude that using spectral gain in
the a priori SNR estimator of HRNR is best to keep speech distor-
tion low.
3.2.2. HRNR and biased HRNR
We described the effectiveness of HRNR in Section 3.2.1. Next,

we discuss the relation between the sound quality and internal
parameters from HRNR and biased HRNR. Biased HRNR has two
internal parameters (q0 and e0). The q0 was fixed to 0.1 or 0.9 and
we increased e0 from 0.0 to 1.0. For HRNR and biased HRNR, the
a in the first step was set to 0.5 and 0.98. Other conditions were
the same as those mentioned in Section 3.2.1.

Figs. 4 (a) and (b) show the behavior of the KR by adjusting the
internal parameters. Larger symbols indicate that each parameter
is set to zero, i.e., larger j and � are n̂HRNRq¼0 with a ¼ 0:5 and

a ¼ 0:98, larger j and � indicate n̂B�HRNR
q0¼0:1;e0¼0 and n̂B�HRNR

q0¼0:9;e0¼0 with

a ¼ 0:5, larger � and � represent n̂B�HRNR
q0¼0:1;e0¼0 and n̂B�HRNR

q0¼0:9;e0¼0 with

a ¼ 0:9, and M and N indicate the scores of n̂B�HRNR
G;e0¼0 with a ¼ 0:5

and a ¼ 0:98, respectively. The gray areas mean that the KR is less
than 1:0 (musical-noise-free condition). The NRR and KR decrease
with the increase in e0 (see black and white symbols). Biased HRNR
suppresses musical noise generation under the same NRR condi-
tion. In the constant parameter case n̂B�HRNR

q0 ;e0 of biased HRNR (black
or white round and quadrate symbols), some symbols reach a KR
less than 1:0 not depending on q0. Furthermore, a lower q0 is effec-
tive because a higher NRR is better. On the other hand, the KR of
n̂B�HRNR
G;e0 with a ¼ 0:5 (M) does not meet the musical-noise-free con-

dition (KR < 1:0 area). Therefore, in order for the output of n̂B�HRNR
G;e0

to meet the musical-noise-free condition, it is necessary to increase
the noise reduction level in the first step.

Figs. 4 (c) and (d) show the tendency by changing each param-
eter in CD versus NRR. The NRR and CD decrease by introducing e0
and biased HRNR suppresses speech distortion compared with
HRNR. The n̂B�HRNR

q0 ;e0 achieves the lower CD than n̂B�HRNR
G;e0 under the

same NRR condition (e.g., in Fig. 4 (c) at NRR = 20, the black circle
is plotted under the black triangle symbol). As a result, biased
HRNR is a high-quality noise reduction method compared to HRNR
and the DD approach, and a lower constant q0 is effective.

3.3. Discussion on introducing bias

We described the behavior of the internal parameters for each a
priori SNR estimator in the previous section. The results indicate
that biasing contributes to decreasing KR and enables biased HRNR
to meet the musical-noise-free condition. In this section, we focus
on the effectiveness of biasing and discuss its contribution in terms
of the estimation accuracy of a priori SNR. First, we conducted a
quantitative evaluation of estimation accuracy. The observed sig-
nals were mixed babble noise, railway station noise, street noise,
and white Gaussian noise with clean speech at 0- and 10-dB input
SNRs. The log-error (LogErr) was used for measuring the amount of
estimation error. LogErr is calculated as the sum of the amounts of
underestimation LogErrun and overestimation LogErrov, i.e.,

LogErr ¼ LogErrun þ LogErrov; ð23Þ



Fig. 4. Results of sound quality by adjusting each internal parameter of HRNR and biased HRNR. (a) and (b) indicate relationship between NRR and KR, (c) and (d) indicate
relationship between NRR and CD. Larger symbols indicate that each parameter is set to zero, i.e., larger j and � are n̂HRNRq¼0 with a ¼ 0:5 and a ¼ 0:98, larger j and � indicate
n̂B�HRNR
q0¼0:1;e0¼0 and n̂B�HRNR

q0¼0:9;e0¼0 with a ¼ 0:5, larger � and � represent n̂B�HRNR
q0¼0:1;e0¼0 and n̂B�HRNR

q0¼0:9;e0¼0 with a ¼ 0:9, and M and N indicate the scores of n̂B�HRNR
G;e0¼0 with a ¼ 0:5 and a ¼ 0:98,

respectively.

Fig. 5. Results of log-error in 0-dB input SNR (upper) and 10-dB input SNR (lower).
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Fig. 6. Comparison of true and estimated a priori SNRs under speech presence interval in (a) frequency bin and (b) frame.
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LogErrun ¼ 10
PK

Rp;kMax log10
n

n̂
;0

� �
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where Min a; b½ � returns a smaller value, and the true a priori SNR n
was computed using Eq. (5) assuming that clean and noise signals
were known. We obtained a priori SNRs estimated using the DD
approach, HRNR, and biased HRNR, and computed each LogErr with
respect to the true one. Each parameter was set to achieve the same
NRR.

Fig. 5 shows the results of LogErr in various noisy environments.
Many large underestimations occurred with the DD approach.
HRNR suppressed the more underestimation compared to the DD
approach; however, HRNR overestimated the a priori SNR more.
Although biased HRNR increased the total error compared to the
other methods, it kept the amount of underestimation low. We
argue that this is due to introducing bias.

Next, we observed the actual behavior of a priori SNR to confirm
the effect of biasing. The observed signal was made by mixing bab-
ble noise with the clean speech at a 10-dB input SNR. To achieve
20-dB NRR for each method, the a of the DD approach was set to
0:97;q of HRNR was set to 0:04, and q0 and e0 of biased HRNR were
set to 0:1 and 0:8, respectively. Other experimental conditions
were the same as those mentioned in Section 3.2.1.
Fig. 6 shows the results of the estimated a priori SNRs of these
methods under speech presence interval. Figs. 6 (a) and (b) repre-
sent each estimated a priori SNR in a frame and frequency bin,
respectively. First, we compared the true a priori SNR and that with
the DD approach. The behavior with the DD approach tracks the
true a priori SNR in the lower position (i.e., underestimation). In
particular, the underestimation is outstanding at high frequency
(around 4 kHz), as shown in Fig. 6 (a). The underestimation leads
to speech distortion and harmonic distortion in the high-
frequency part. Additionally, the transition in the behavior with
the DD approach is slow. This phenomenon is caused by smoothing
down using the previous frame at the estimation, and the delay
occurs in an area from speech absent to speech presence and pro-
duces the underestimation. Therefore, we confirm that the a priori
SNR estimator of the DD approach triggers underestimation, lead-
ing to speech distortion. Next, we compared HRNR with the DD
approach. From Figs. 6 (a) and (b), HRNR estimated the a priori

SNR highly compared with DD approach. A restored signal Sharmo

regenerates the pseudo spectrum of the harmonics. Namely, the
protrusions with the DD approach and HRNR mostly synchronize
and we expect the improvement of speech distortion from to this
effect. In biased HRNR, bias smoothens the a priori SNR (see the
period from the 200 th frame to 240 th frame in Fig. 6 (b)). This
smoothing contributes to reducing musical noise generation which
is perceived by isolated components in the processed power spec-
trogram. Therefore, biased HRNR can suppress speech distortion
and musical noise generation.



Fig. 7. KR obtained at 0-dB (upper) and 5-dB (lower) input SNRs. Filled areas denote musical-noise-free condition.
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Naturally, if a correct a priori SNR is used in Eq. (11), we can
obtain significantly high-quality output signals. An a priori SNR
close to a true one is intuitively better. However, we indicated that
introducing bias improves speech quality despite the increase in
estimation error. The biasing flattens out the power spectrum in
a noise-dominant area after processing and suppresses musical
noise generation. Therefore, we argue the biasing contributes to
suppressing the amounts of speech distortion and musical noise
generation.

4. Experimental evaluation

4.1. Experimental conditions

To validate the effectiveness of biased HRNR, we conducted a
comparative experiment involving three conventional noise reduc-
tion methods: MMSE-STSA estimator, MMSE-STSA estimator with
HRNR, and musical-noise-free MMSE-STSA estimator. The objec-
tive scores were KR and CD.

We used ten sentences (five for male speech and five for female
speech) as the target speech signals, which were mixed with three
types of noise (railway station noise, street noise, and white Gaus-
sian noise) at 0- and 5-dB input SNRs. The gain function of the
MMSE-STSA estimator with HRNR in Eq. (15) was set as the
MMSE-STSA estimator. It is best to set q0 to a constant value for
biased HRNR, as mentioned in Section 3.2.2. We used Eq. (18) as
the a priori SNR formula in this experiment. To achieve 10-dB
NRR for each noise reduction method, we manually controlled
the internal parameters of each method. Other conditions, e.g.,
sampling rate, window size, and shift length were the same as
those mentioned in Section 3.2.1. Note that we made the NRRs of
the three conventional methods and our MMSE-STSA estimator
with biased HRNR even (i.e., we did not set their parameters in
order for these KRs to be 1 or less); therefore, two of the
musical-noise-free methods we mentioned do not necessarily
meet the musical-noise-free condition.

4.2. Results

The objective evaluation results obtained for musical noise gen-
eration and speech distortion are shown in Figs. 7 and 8, respec-
tively. In both figures, the input SNR in the upper part was 0 dB
and that in the lower part was 5 dB. First, from Fig. 7, the
musical-noise-free MMSE-STSA estimator and MMSE-STSA estima-
tor with biased HRNR met the musical-noise-free condition for
most noise cases. Although the KR of our MMSE-STSA estimator
with biased HRNR was slightly more than 1.0 for railway station
noise, it generated little musical noise compared with the other
methods. This indicates that it is effective in terms of musical noise
generation. Next, Fig. 8 indicates that our MMSE-STSA estimator



Fig. 8. CD at 0-dB (upper) and 5-dB (lower) input SNRs.
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with biased HRNR achieved the lowest CD in all cases. Therefore,
we can confirm that MMSE-STSA estimator with biased HRNR is
a better high-quality noise reduction method compared with the
other methods under the same NRR conditions.

5. Conclusion

We proposed a noise reduction method for generating no musi-
cal noise with low speech distortion by applying biased HRNR. The
contribution of this paper is suppressing lower speech distortion
under the musical-noise-free condition with the introduction of
bias. In Section 3, we confirmed that HRNR is effective compared
to the DD approach. The internal parameters are best to set small
and constant in terms of the musical-noise-generation problem.
We also mentioned that HRNR is limited in meeting the musical-
noise-free condition. In contrast, speech distortion is low when
the internal parameters are set to the spectral gain obtained in
the first step of HRNR. Next, we showed that the proposed method
is a higher-quality noise reduction method than HRNR, and meets
the musical-noise-free condition in all cases. We also confirmed
that introducing a bias suppresses musical noise generation, and
speech distortion with biased HRNR and weighting parameter is
more effective as a small constant value. Finally, we conducted a
comparative experiment (Section 4), and the results indicate that
our MMSE-STSA estimator with biased HRNR is superior to con-
ventional methods in terms of both suppressing musical noise gen-
eration and speech distortion.
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