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1 はじめに
音声対話ロボットやテレビ会議システム，補聴器な

ど，音声通信に関するシステムが増加しており，音声

による情報伝達が多く利用されている．しかし，周囲

の雑音によって目的音声の品質が劣化してしまうため，

高精度で目的音声を抽出する雑音抑圧が必要となる．

雑音抑圧手法は主に２つに分けられる．１つは信号の

変形が線形な関係で表される線形処理，もう１つは信

号の変形が非線形な関係で表される非線形処理である．

線形処理に基づく雑音抑圧技術の代表例としては，ビー

ムフォーミングに基づく手法やブラインド音源分離に

基づく手法などがある．線形処理に基づく雑音抑圧は

出力する音質が良い反面，複数のマイクロホンを必要

とするためにシステムの規模やコストが大きくなって

しまう問題がある．一方，非線形処理に基づく雑音抑

圧技術は，雑音抑圧性能が高く，アルゴリズムの汎用

性に優れており，演算量も少ないことから盛んに研究

されている技術である．しかし，非線形処理は，出力

信号中に「ミュージカルノイズ」と呼ばれる非常に耳

障りな歪みが生じる問題がある．また，雑音抑圧量を

大きくすると，目的の音声成分も歪んでしまい，かえっ

て聞こえづらくなってしまうこともある．

そこで，音声成分の歪みを改善する方法として倍音

復元に基づく雑音抑圧（Harmonic Regeneration Noise

Reduction: HRNR）が提案されている [1]．発声された

音声には倍音成分が多く含まれており，雑音抑圧を行

うと音声中の多くの倍音成分が歪んでしまう．HRNR

で歪んだ倍音成分を倍音復元することにより，より品

質の良い音声を得ることができる．しかし論文 [1]で

は，１つの雑音抑圧手法についてのみ言及しており，他

の雑音抑圧手法での挙動については述べられていない．

そこで本研究では，３つの雑音抑圧手法（Wiener

Filtering: WF [2]，Spectral Subtraction: SS [3]，Min-

imum Mean-square Error Short-Time Spectral Am-

plitude: MMSE-STSA法 [4]）に対して倍音復元を行

い，歪みの改善量などの効果について調査した．

2 雑音抑圧手法

2.1 信号の定義

雑音を含む観測信号 x(t)は，元の音声信号 s(t)と

雑音信号 n(t)から成り次の式で表される．

x(t) = s(t) + n(t) (1)

式 (1)を短時間フーリエ変換することで，次の式に表

される複素スペクトルを得る．

X(p, k) = S(p, k) +N(p, k) (2)

ここで，pは短時間フレームのインデックス，k はフ

レーム内の周波数インデックスを表す．次に，雑音抑

圧を行う．観測信号のスペクトル X(p, k)から，次の

式に示すような音声信号のスペクトルの推定値 Ŝ(p, k)

を求めることを考える．

Ŝ(p, k) = G(p, k)X(p, k) (3)

ここで，G(p, k)はスペクトルゲインと呼ばれるもの

で，観測信号のスペクトルに適当なスペクトルゲイン

を乗じることで，推定音声信号のスペクトルを得る．

2.2 WF

WFは，古典的な雑音抑圧手法である [2]．WFのス

ペクトルゲイン GWF(p, k)は次の式で表される．

GWF(p, k) = ξ(p, k)/1 + ξ(p, k) (4)

ξ(p, k)は事前 SNRと呼ばれ，次の式で表される．

ξ(p, k) = E[|S(p, k)|2]/E[|N̂(p, k)|2] (5)

ここで，|N̂(p, k)|2 は推定雑音信号のパワースペクト
ル，E[·]は期待値演算子を表す．事前 SNRを求めるに

は音声信号の情報が必要となるが，実環境で音声信号

を事前に知っておくことはできない．そこで，次式で

表される decision-directed法を利用した事前 SNR 取

り出す ξ(p, k)を推定する [4]．

ξ̂(p, k) =α
|G∗(p− 1, k − 1)X(p− 1)|2

E[|N̂(p, k)|2]
+ (1− α)P [γ(p, k)− 1] (6)



ここで，αは忘却係数と呼ばれ，前フレームの情報を

どの程度事前 SNRの推定に利用するかを決めるパラ

メータである．一般的には α = 0．98と設定するのが

音質的には最も良いとされる．また，G∗(p, k)は各抑

圧手法でのスペクトルゲインである．P [·]は半波整流
関数であり，次の式で定義される．

P [x] =

x (if x > 0)

0 (otherwise)
(7)

また，γ(p, k)は事後SNRと呼ばれ，次の式で表される．

γ(p, k) = |X(p, k)|2/E[|N̂(p, k)|2] (8)

2.3 SS

SSは演算量が少なく，高い雑音抑圧性能を持つため，

現在でも多く用いられている雑音抑圧手法である [3]．

SSは観測信号から推定した雑音信号をパワースペクト

ル領域で減算し，目的音声を推定する手法である．SS

のスペクトルゲイン GSS(p, k)は，次の式で表される．

GSS(p, k) =
√
1− βE[|N̂(p,k)|2]

|X(p,k)|2 (|X(p, k)|2 > βE[|N̂(p, k)|2])

0 (otherwise)

(9)

ここで，βは減算係数と呼ばれ，観測信号から推定雑音

信号をどの程度減算するかを決めるパラメータである．

2.4 MMSE-STSA法

MMSE-STSA 法は，元の音声信号と推定音声信

号の振幅スペクトルの平均二乗誤差を最小にする

手法である [4]．MMSE-STSA 法のスペクトルゲイ

ン GSTSA(p, k)は次の式で表される，

GSTSA(p, k) =

√
ν(p, k)

γ(p, k)
Γ

(
3

2

)
M

(
−1

2
; 1; ν(p, k)

)
(10)

ここで，Γ(h)，M(a; b; z)はそれぞれガンマ関数，第一

種合流超幾何関数を表し，ν(p, k)は次の式で表される．

ν(p, k) = ξ(p, k)γ(p, k)/1 + ξ(p, k) (11)

ここで，事前 SNR ξ(p, k)はWFと同様に，式（6）に

より推定する．

3 倍音復元
音声は多くの倍音成分を含み，雑音抑圧を行うと倍音

成分が失われる．HRNRは，失われた倍音成分を復元

させるために提案された手法である [1]．HRNRで倍音

復元した音声信号のスペクトルの推定値 ŜHRNR(p, k)

を得るためのスペクトルゲイン GHRNR(p, k)は以下に

示すように，HRNRの事前 SNR ξ̂HRNR(p, k)と事後

SNR γ(p, k)の関数で表される．

GHRNR(p, k) = υ(ξ̂HRNR(p, k), γ(p, k)) (12)

ここで，関数 υには様々なスペクトルゲイン関数を選

択できる（WF，MMSE-STSA法など）．HRNRの事

前 SNR ξ̂HRNR(p, k)は，次の式で表される．

ξ̂HRNR(p, k) =ρ(p, k)
|Ŝ(p, k)|2

E[|N̂(p, k)|2]

+ (1− ρ(p, k))
|Sharmo(p, k)|2

E[|N̂(p, k)|2]
(13)

ここで，ρ(p, k) は，音声の推定に利用する情報をど

の程度にするかを決める関数である．この関数は，雑

音抑圧に用いたスペクトルゲインとすると良いとされ

る [1]．Sharmo(p, k)は復元信号のスペクトルと呼ばれ，

時間領域での復元信号は次の式で定義される．

sharmo(t) = NL(ŝ(t)) (14)

ここで，NLは非線形関数である（絶対値，半波整流

関数など）．また，ŝ(t)は時間領域での雑音抑圧を行っ

た信号である．

4 評価実験

4.1 評価尺度の定義

評価実験では，3つの手法で雑音抑圧を行うため，各

雑音抑圧手法での雑音抑圧量を揃えて評価を行う．そ

こで SNR向上比 (Noise Reduction Rate: NRR) [5]を

導入する．NRRは次のように計算される．

NRR = 10 log10
E[s2out]/E[n

2
out]

E[s2in]/E[n
2
in]

(15)

ここで sin と sout はそれぞれ入力，出力音声であり，

nin と nout はそれぞれ入力，出力雑音である．NRR

は，各抑圧の内部のパラメータを変動させることで値

を調整する．一般的に，内部のパラメータを大きくす

ると，雑音抑圧量が大きくなり，NRRの値も大きくな

る．評価対象の信号は雑音抑圧後の NRRを揃えた各

推定音声信号と，倍音復元した音声信号であり，NRR，

カートシス比 (Kurtosis Ratio: KR) [6]，ケプストラム

歪み (Cepstral Distortion: CD) [7]の 3 つの客観評価

尺度で評価する．KRは,ミュージカルノイズの発生量

を測る評価尺度である．カートシス kurtは次式で計

算される．

kurt = µ4/µ
2
2 (16)

ここで µ2，µ4 はそれぞれ 2次，4次のモーメントで

ある．これより KRは次式で計算される．

KR = kurtproc/kurtorg (17)



ここで kurtprocは雑音抑圧後の雑音区間でのカートシ

スであり，kurtorgは観測信号の雑音区間でのカートシ

スである．KRの値が小さいほど，ミュージカルノイ

ズの発生量が少ないことを表す．

さらに，精度の良いKRの評価を行うため，信号の

パワースペクトルがガンマ分布に従うと仮定する [6]．

観測されたデータサンプルから，ガンマ分布の形状母

数 αkurt は最尤推定によって次の式で推定する [8].

αkurt =
3− γkurt +

√
(γkurt − 3)2 + 24γkurt
12γkurt

(18)

ここで γkurt は次式で計算される．

γkurt = log(E[|X(p, k)|2])− E[log |X(p, k)|2] (19)

式 (18)より，ガンマ分布によるモデリング信号のカー

トシス kurtGM は次の式で得られる [6]．

kurtGM =
µ4

µ2
2

=
(αkurt + 2)(αkurt + 3)

αkurt(αkurt + 1)
(20)

CDは，雑音抑圧による歪みの量を測る評価尺度で

ある．CDは次式で計算される [7]．

CD =
20

T log 10

T∑
p=1

√√√√ B∑
k=1

2(Cout(p, k)− Cref(p, k))2

(21)

ここで，T は総フレーム数，Bは評価に用いるケプス

トラムの次元数である．Cout(p, k)とCref(p, k)はそれ

ぞれ，処理後の音声とクリーンな音声のケプストラム

係数である．CDの値が小さいほど，音声の歪みが小

さいことを表す．

4.2 実験条件

目的音声には JNASの音声コーパス [9]より 10 文

（男性 5 発話，女性 5 発話，計 10 発話），雑音は駅雑

音，道雑音，白色ガウス雑音の 3 種類とし，それらを

それぞれ 0 dB，5 dBの入力 SNRで混合したものを

観測信号とした．評価対象はこれらの観測信号に対し

て 3つの雑音抑圧手法（WF，SS，MMSE-STSA法）

で雑音抑圧した音声信号と，雑音抑圧後に倍音復元し

た音声信号の 6信号とした．式 (12)の倍音復元するス

ペクトルゲインの式 υはMMSE-STSA法のスペクト

ルゲインを用いた．式 (13)のパラメータ ρ(p, k)には，

それぞれの雑音抑圧のスペクトルゲインを用いた．ま

た，式 (14)の非線形関数には式 (7)半波整流関数を用

いた．３つの手法で雑音抑圧を行った音声の NRRが

10 dBになるように，WF，MMSE-STSA法において

は式 (6)の忘却係数 αを，SSにおいては式 (9)の減算

係数 βを調整した．式（21）の次元数 Bは 22とした．

4.3 実験結果

まず，音声と駅雑音を入力 SNR 0 dBで混合した場

合における，各種信号のスペクトログラムを図 1に示

す．図 1(a)は音声と駅雑音を入力 SNR 0 dBで混合

した信号，図 1(b)は SSで雑音抑圧した信号，図 1(c)

は図 1(b)に対し，倍音復元を行った信号，図 1(d)は

クリーンな音声信号である．図 1(b)でより雑音抑圧

で失われた倍音成分が図 1(c)では倍音復元されてい

ることがわかる．

次に入力 SNRを 0 dB，5 dBで混合した時のNRR，

KR，CDの値を図 2，図 3に示す．図 2(a)，図 3(a)よ

り倍音復元によるNRRの変化は小さいことがわかる．

また，図 2(b)，図 3(b)より KRについて，倍音復

元前の音声より倍音復元後の音声の KR が小さいこ

とから，ミュージカルノイズの発生量が減少している

ことがわかる．しかし，白色ガウス雑音中での音声を

MMSE-STSA 法で雑音抑圧し，倍音復元した場合に

は，ミュージカルノイズの発生量がわずかに増加して

いることが確認できる．

さらに，図 2(c)，図 3(c)より CDについて，全て

の雑音抑圧手法で CDが減少しており，最も音声成分

の歪みが改善されている雑音抑圧手法は SSであるこ

とがわかる．また，倍音復元後の CDの値はおおよそ

1 dBから 2 dBの間にある．SSで抑圧した場合のよ

うに音声が大きく歪んでいると，倍音復元による大き

な歪みの改善が期待できる．一方，MMSE-STSA法で

抑圧すると倍音復元しなくとも歪みの量が小さいため，

歪みは改善するものの，改善量は小さい．図 1(c)から

も，特に周波数の高い部分が倍音復元されており，歪

みが改善されていることが見て取れる．

以上をまとめると，NRRの変化は小さいが，ミュー

ジカルノイズの発生量が減少していることや，CDが

改善されていることから，どの雑音抑圧手法に対して

も，倍音復元を行うことは有効であると言える．

5 まとめ
本稿では，様々な雑音抑圧手法で雑音抑圧を行った

音声信号に対し，倍音復元を行うことで得られる信号

についての評価を行った．評価実験から，倍音復元を

行うことで，雑音抑圧による歪みの改善に加え，ほと

んどの場合においてミュージカルノイズの発生量も減

少することわかり，どの雑音抑圧手法に対しても倍音

復元を行うことは有効であることがわかった．今後は，

音声認識実験や主観評価実験を行い，倍音復元の音声

認識性能や人間の聴覚への影響を調査する．
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