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1 はじめに
高品質な Deep Neural Network (DNN) 音声合成
システム [1]の構築には，スタジオ等の理想的な環境
で収録された音声データの利用が不可欠であるため，
音声合成の学習に利用可能な音声データは非常に限
定される．本稿では，雑音環境下音声から高品質な音
声合成を構築する方法を提案する．通常，そのよう
な音声を用いる場合，spectral subtraction (SS) 等の
パラメトリック雑音抑圧を施した後に通常の音声合
成の学習を行うが，その雑音抑圧による音声歪みは，
音声合成の学習時に増幅されて合成音声品質を悪化
させる．本稿では，敵対的学習アルゴリズム [2]によ
り学習される雑音生成モデルを用いた，ボコーダフ
リー音声合成の学習法を提案する．雑音生成モデル
は，観測雑音スペクトルの統計量を持つように学習
され，雑音スペクトルを確率的に生成する．音響モ
デル（本稿では音声合成モデルと呼ぶ）は，生成雑音
を加算した後のスペクトルが雑音環境下音声のスペ
クトルに一致するように学習される．提案法は雑音
加算過程を考慮して音声合成モデルを学習するため，
従来生じていた品質低下を低減できる．実験的評価
により，提案法の有効性を示す．

2 従来法
SS [3] は，観測雑音のパワースペクトルの
分布を期待値で近似して，雑音環境下音声
のパワースペクトルから減算する手法であ
る．ここで，観測雑音の対数振幅スペクト
ル系列を yn = [y⊤

n,1, · · · ,y⊤
n,t, · · · ,y⊤

n,Tn
]⊤，

雑音環境下音声の対数振幅スペクトル系列
を yns = [y⊤

ns,1, · · · ,y⊤
ns,t, · · · ,y⊤

ns,T ]
⊤ とす

る．Tn と T はそれぞれ，観測雑音のフレー
ム数と雑音環境下音声のフレーム数である．
yn,t = [yn,t (1) , · · · , yn,t (f) , · · · , yn,t (F )]

⊤ と

yns,t = [yns,t (1) , · · · , yns,t (f) , · · · , yns,t (F )]
⊤ は，

フレーム tにおける観測雑音及び雑音環境下音声の対
数振幅スペクトルである．f は周波数ビンのインデッ
クス，F は周波数ビン数である．ただし，ynは，yns
の非音声区間に対応する．Spectral subtraction後の
対数振幅スペクトル y

(SS)
ns は，次式で与えられる．

exp{y(SS)ns,t (f)} =


√

exp{yns,t (f)}2 − βȳn,t (f)

if exp{yns,t (f)}2 > βȳn,t (f)

0 otherwise

(1)

ȳn,t (f) =
1

Tn

Tn∑
t=1

exp{yn,t (f)}2 (2)

ただし，βは減算係数であり，観測信号から観測雑音
をどの程度減算するかを決めるパラメータである．　
入力コンテキストから音声の対数振幅スペクトルを予
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Fig. 1 提案法の DNNアーキテクチャ．雑音生成モ
デルGn (·)は，観測雑音を確率的に生成する．

測する音声合成モデルをGs (·)とする．ここで，入力
コンテキスト系列を x = [x⊤

1 , · · · ,x⊤
t , · · · ,x⊤

T ]
⊤ と

する．Gs (·)のモデルパラメータは，生成される対数
振幅スペクトル ŷs = Gs (x)と y

(SS)
ns の平均二乗誤差

（MSE: Mean Squaed Error）を最小化するように学
習される．その損失関数は，次式で示される．

LMSE

(
ŷs,y

(SS)
ns

)
=

1

T

(
ŷs − y(SS)

ns

)⊤ (
ŷs − y(SS)

ns

)
(3)

この学習手順は，雑音抑圧により生じた音声歪み
（例えば musical noise [4]）を増幅させてしまう．

3 提案法
提案法のDNNアーキテクチャをFig. 1に示す．音
声合成モデル Gs (·)に加え，雑音生成モデル Gn (·)
を導入する．Gn (·)は，既知の事前分布を観測雑音の
分布に変形する役割を持ち，雑音スペクトルを確率
的に生成する．Gs (·)は，その雑音スペクトルを加算
した後のスペクトルが雑音環境下音声のスペクトル
に一致するように学習される．予備実験において，雑
音環境下音声を用いたGs (·)とGn (·)の同時学習を
試みたが，雑音抑圧効果が低かった．故に本稿では，
まず，ynを用いて，その分布を表現するGn (·)を事
前学習し，その後，Gn (·) のモデルパラメータを固
定し，雑音環境下音声を用いてGs (·)の学習を行う．
Gn (·)の学習には，敵対的学習アルゴリズム [2]を使
用する．

3.1 敵対的学習による雑音生成モデルの学習
Gn (·)の入力は，既知の事前分布からランダム生成
された変数n = [n⊤

1 , · · · ,n⊤
t , · · · ,n⊤

Tn
]⊤である．nt

は，フレーム tにおいて，事前分布からランダム生成
されたベクトルである．Gn (·)は，観測雑音スペクト
ル yn と生成雑音スペクトル ŷn = Gn (n)を識別す
る雑音識別モデルDn (·)と交互に更新される．Gn (·)
の損失関数 L

(G)
GAN (·)と，Dn (·)の損失関数 L

(D)
GAN (·)
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は，それぞれ次式で示される．

L
(G)
GAN (ŷn) =− 1

Tn

Tn∑
t=1

logDn(ŷn,t) (4)

L
(D)
GAN (yn, ŷn) =− 1

Tn

Tn∑
t=1

logDn(yn,t)

− 1

Tn

Tn∑
t=1

log
(
1−Dn(ŷn,t)

)
(5)

この学習は，yn と ŷn の分布間の近似 Jensen-
Shannon divergenceを最小化する．

3.2 雑音生成モデルを用いた音声合成モデル学習
音声と雑音の位相情報を無視して，振幅ドメイン
における加法性が成り立つと仮定する．学習済みの
Gn (·)を用いて，次式の損失関数を最小化するよう
に，音声合成モデルGs (·)を学習する．

LMSE (ŷns,yns) =
1

T
(ŷns − yns)

⊤
(ŷns − yns) (6)

ŷns = log (exp ŷs + exp ŷn) (7)

ただし，ここでの ŷnの系列長は T であることに注意
する．生成時には，ŷs = Gs (x)を，合成音声の対数
振幅スペクトルとする．
提案法は，明示的な確率分布を定義せず，その経験
分布を Generative Adversarial Network の枠組みで
表現するため，従来の音声歪みを軽減できる．

4 主観評価実験
4.1 実験条件
利用する音声データは，無響室にて収録された，日
本人女性 1名による約 3000文である．雑音環境下音
声は，この収録音声データに対して白色雑音を人工
的に加算したものとする．評価データはATR 音素バ
ランス 503文， Jセット 53文である．音声合成モデ
ル及び雑音生成モデルは，動的特徴量を含まない 257
次元の対数振幅スペクトルを予測する．コンテキスト
特徴量は 444次元のベクトルであり，439次元の言語
特徴量，3次元の継続長特徴量，連続対数 F0，及び
有声無声ラベルである．雑音生成モデルに入力され
る ntは各フレーム毎に 100次元ベクトルであり，各
次元の値は一様分布からランダムに生成される．音
声合成モデル，雑音生成モデル，雑音識別モデルは，
それぞれ Feed-Forward neural networkで記述され，
従来法と提案法で同様の音声合成モデルを使用する．
各モデルの隠れ層数は 3，隠れ層の素子数は 512，隠
れ層の活性化関数は，leaky ReLUである．音声合成
モデルと雑音生成モデルの出力層の活性化関数は，線
形関数である. 雑音識別モデルの出力層の活性化関数
は，sigmoid関数である.

4.2 主観評価結果
実験的評価では，以下の 2手法を比較する．

• SS+MSE: SS を施した後，平均二乗誤差最小
化により音声合成モデルを学習

• Proposed: 提案法

雑音環境下音声の SN比は，0dB，5dB，10dBとし，
　 SSにおける減算係数 βを，0.5, 1.0, 2.0, 5.0に設定
する．βの値が小さいほど音声歪みは小さく，βの値
が大きいほど音声歪みは大きい．評価として，各 SN
比，各 β の設定において，合成音声の自然性に関す
るプリファレンス ABテストを実施する．評価者に
は，より不快でなく，かつ，より自然な音声を選択さ
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Fig. 2 音質に関する主観評価結果 (SNR = 0 dB)
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Fig. 3 音質に関する主観評価結果 (SNR = 5 dB)
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Fig. 4 音質に関する主観評価結果 (SNR = 10 dB)

せた．評価人数は各評価に対して 25人，計 300人で
ある．
Fig. 2から Fig. 4に評価結果を示す．全設定にお

いて提案法のスコアが従来法のスコアを上回り，その
p値は 10−6より小さいため，提案法の有効性が示さ
れる．

5 まとめ
本稿では，雑音環境下音声を用いた高品質音声合

成のために，雑音を確率的に生成する雑音生成モデ
ルを導入し，雑音加算過程を考慮した音声合成モデ
ル学習法を提案した．実験的評価では，　提案法によ
る音質改善効果を示した．
今後の予定として，nonnegative matrix factoriza-

tionのアクティベーション行列などによる時間変動
のモデリングや，雑音混入強度の導入などが挙げら
れる．また，ボコーダを使用する合成方式との比較，
クリーン音声を用いた適応学習を行う．
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