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雑音環境下音声を用いた音声合成のための
雑音生成モデルの敵対的学習

宇根 昌和1,2,a) 齋藤 佑樹2,b) 高道 慎之介2,c) 北村 大地2,d) 宮崎 亮一1,e) 猿渡 洋2,f)

概要：高品質な統計的パラメトリック音声合成システムの構築には，スタジオ等の理想的な環境で収録さ
れた音声データの利用が不可欠であるため，現存する膨大な音声データのうち，音声合成の学習に利用可
能なものは非常に限定される．本稿では，雑音環境下音声から高品質な音声合成を構築する方法を提案す
る．従来，そのような音声を学習データとして用いる場合，spectral subtraction等の雑音抑圧処理を施し
た後に，通常の音声合成の学習を行う．しかしながら，雑音スペクトルの生成分布をパラメトリックに定
義する雑音抑圧法は処理後の音声を歪ませ，さらに，その歪みは音声合成の学習時に増幅されて合成音声
品質を悪化させる．そこで本稿では，敵対的学習アルゴリズムにより学習される雑音生成モデルを用いた，
音声合成の学習法を提案する．雑音生成モデルは，観測雑音スペクトルの統計量を持つように学習され，
雑音スペクトルを確率的に生成する．テキストから音声スペクトルを生成する音声合成モデルは，生成雑
音を加算した後のスペクトルが雑音環境下音声のスペクトルに一致するように学習される．提案法は，雑
音スペクトルの生成分布を柔軟にモデル化でき，さらに，雑音加算過程を考慮して音声合成モデルを学習
するため，従来法において生じる品質低下を低減できる．実験的評価では，いくつかの雑音抑圧強度と SN

比において合成音声を作成し，提案法の知覚的音質が従来法を上回ることを示す．

Generative adversarial training of the noise generation model for
speech synthesis using speech in noise
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1. はじめに
統計的パラメトリック音声合成 [1] は統計モデルを使用

してテキストから音声を合成する方法であり，音声合成の
最終目標の 1つは，人間の発話のように自然な音声を合成
することである．音声品質は自然性の要素の 1つであり，
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合成音声の品質向上のための様々な方法が提案されている
[2], [3], [4]．特に，Deep Neural Network（DNN）に基づ
く音声合成 [5] は，合成音声の品質を著しく向上させてい
る．しかしながら，高品質な統計的パラメトリック音声合
成システムを構築するためには，スタジオ等の理想的な環
境で収録された音声データを利用することが必須である．
そのため，現存する膨大の音コーパス [6]や，地理的理由
により劣悪環境で収録された音声コーパス [7] 等を利用す
ることは，現状困難である．音声合成による音声コミュニ
ケーションの拡張のためには，このような劣悪環境下の学
習データからでも高品質な音声合成を構築する必要があ
る．劣悪環境の種類として，狭帯域 [8]，劣悪通信経路 [9]

も挙げられるが，本稿では，CPJD (Crowdsourced speech

corpora of Parallel Japanese Dialect) コーパス [7] を参考
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にして，一般家庭環境において収録されたような，定常雑
音の混入した音声を対象とする．
雑音環境下音声を統計的パラメトリック音声合成の学習

データとして用いる場合，通常，その前処理として雑音抑
圧を行う（Fig. 1上）．ただし，音声合成のための雑音抑圧
は，最終的にボコーダパラメータ（例えば，STRAIGHT

[10] やWORLD [11]により抽出されたスペクトル包絡）を
得る必要があるため，音声認識で用いられる一般的な雑音
抑圧と異なる．音声合成のための雑音抑圧は，大きく二つ
に分けられる．ひとつは，雑音環境下音声からボコーダパ
ラメータを直接的に推定する方法である [12]．この場合，
雑音データベースを別途用意して，雑音環境下音声からボ
コーダパラメータを推定する統計モデルを事前に構築す
る．この手法は，DNN等の利用により非線形変換を可能
にするが，未知雑音に対する頑健性を保証しない．もうひ
とつの方法は，信号処理ベースの雑音抑圧を施した後に，
通常の方法でボコーダパラメータを抽出する方法である．
Spectral subtraction [13] などの教師なし雑音抑圧は，未知
雑音に対しても頑健に動作するが，雑音抑圧後の音声波形
に対するボコーダパラメータ抽出の頑健性を保証しない．
一方で本稿では，ボコーダフリー DNN音声合成方式を用
いて，雑音環境下音声からの音声合成の構築を試みる．ボ
コーダフリー DNN音声合成は，ボコーダパラメータでは
なく，スペクトルや音声波形を直接推定する枠組みである
[14], [15], [16]．我々は，この方式の利用により，通常の雑
音抑圧で用いられる音源モデルや雑音加算過程を考慮した
音声合成学習が可能になると考える．
本稿では，テキストから音声スペクトルを生成する音声

合成モデル（通常，このモデルは音響モデルと呼ばれるが，
後述の雑音生成モデルと対比させるため音声合成モデル
と定義する）と，定常雑音を確率的に生成する雑音生成モ
デルを用いて，雑音環境下音声から高品質音声合成を構築
する方法を提案する．提案法で導入される雑音生成モデル
は，敵対的学習 [17] の枠組みを用いて，学習データに含
まれる定常雑音スペクトルの統計量を推定する．音声合成
モデルは，雑音生成モデルから確率的に生成される雑音ス
ペクトルと音声合成モデルから生成されるスペクトルの和
が，雑音環境下音声のスペクトルに一致するように学習さ
れる．雑音成分の分布を期待値で近似する従来の spectral

subtractionにくらべ，提案法は，雑音環境下音声から確率
分布をデータドリブンに推定するため，より精微な雑音モ
デリングが可能である．また，雑音加算過程を考慮して音
声合成モデルを学習する（Fig. 1下）ため，音声スペクト
ルの歪みを減らし，より高品質な音声合成の構築が可能と
なる．実験的評価では，いくつかの雑音抑圧強度と SN比
において合成音声を作成し，提案法の知覚的音質が従来法
を上回ることを示す．
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図 1 雑音環境下音声を用いた音声合成の学習手順．従来は，観測さ
れた雑音環境下音声に対して雑音抑圧処理を施した後，その推
定されたクリーン音声を生成するように音声合成モデルの学
習を行う．一方で提案法は，雑音加算過程を考慮して雑音環境
下音声を直接的に生成するよう，音声合成モデルを学習する．

Fig. 1 Procedures of speech synthesis training using noisy

speech. In the conventional way, noise reduction is first

performed, then, the speech generator (i.e., acoustic

model) is trained to predict the noise-reduced speech

parameters. Our method directly predicts the noisy

speech parameters, considering noise addition process.

2. Spectral subtraction による雑音抑圧と
mean squared error 最小化による音声合
成モデル学習

雑音環境下音声に対して spectral subtractionによる雑
音抑圧処理を施した後，mean squared error 最小化による
音声合成モデルを行う．

2.1 Spectral subtractionによる雑音抑圧
Spectral subtraction [13] は，観測雑音のパワースペクト

ルの分布を期待値で近似して，雑音環境下音声のパワースペ
クトルから減算する手法である．ここで，観測雑音の対数
振幅スペクトル系列を yn = [y⊤

n,1, · · · ,y⊤
n,t, · · · ,y⊤

n,Tn
]⊤，

雑音環境下音声の対数振幅スペクトル系列を yns =

[y⊤
ns,t, · · · ,y⊤

ns,t, · · · ,y⊤
ns,T ]

⊤ とする．Tn と T はそれぞ
れ，観測雑音のフレーム数と雑音環境下音声のフレー
ム数である．yn,t = [yn,t (1) , · · · , yn,t (f) , · · · , yn,t (F )]⊤

と yns,t = [yns,t (1) , · · · , yns,t (f) , · · · , yns,t (F )]⊤ は， フ
レーム tにおける観測雑音及び雑音環境下音声の対数振幅
スペクトルである．f は周波数ビンのインデックス，F は
周波数ビン数である．ただし，yn は，yns の非音声区間に
対応する．
Spectral subtraction後の対数振幅スペクトル y(SS)

ns は，
次式で与えられる．
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exp{y(SS)ns,t (f)} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
exp{yns,t (f)}2 − βȳn,t (f)

if exp{yns,t (f)}2 > βȳn,t (f)

0 otherwise

(1)

ȳn,t (f) =
1

Tn

Tn∑

t=1

exp{yn,t (f)}2 (2)

ただし，β は減算係数であり，観測信号から観測雑音をど
の程度減算するかを決めるパラメータである．　

2.2 Mean squared error最小化による音声合成モデル
学習

入力コンテキストから音声の対数振幅スペクトルを予測
する音声合成モデルをGs (·)とする．Gs (·)は neural net-

workで記述される [5], [16]．ここで，入力コンテキスト系
列を x = [x⊤

1 , · · · ,x⊤
t , · · · ,x⊤

T ]
⊤ とする．Gs (·)のモデル

パラメータは，生成される対数振幅スペクトル ŷs = Gs (x)

と y(SS)
ns の平均二乗誤差（MSE: Mean Squaed Error）を

最小化するように学習される．その損失関数は，次式で示
される．

LMSE

(
ŷs,y

(SS)
ns

)
=

1

T

(
ŷs − y(SS)

ns

)⊤ (
ŷs − y(SS)

ns

)

(3)

2.3 問題点
Spectral subtractionは，確率的に加算される雑音の分

布を期待値で近似するため，処理後の音声の分布を大きく
歪ませる．また，musical noiseと呼ばれる聴覚的に不快な
音 [18] を生成する．更に，この推定誤差は，後段の音声合
成モデルの学習時に，その推定値を大きく歪ませる．

3. 提案法：雑音生成モデルを利用した音声合
成モデル学習

提案法の DNNアーキテクチャを Fig. 2に示す．従来法
の音声合成モデルGs (·)に加え，雑音生成モデルGn (·)を
導入する．Gn (·)は，既知の事前分布を観測雑音の分布に
変形する役割を持ち，雑音スペクトルを確率的に生成する．
音声合成モデルGs (·)は，その雑音スペクトルを加算した
後のスペクトルが雑音環境下音声のスペクトルに一致する
ように学習される．
予備実験において，雑音環境下音声を用いた Gs (·) と

Gn (·)の同時学習を試みたが，雑音抑圧効果が低かった．
故に本稿では，まず，観測雑音の対数振幅スペクトル yn

を用いて，その分布を表現する雑音生成モデルGn (·)を事
前学習し，その後，Gn (·)のモデルパラメータを固定し，
雑音環境下音声を用いて音声合成モデルGs (·)の学習を行
う．Gn (·)の学習には，敵対的学習アルゴリズム [17] を使
用する．

図 2 提案法の DNN アーキテクチャ．雑音生成モデル Gn (·) は，
観測雑音を確率的に生成する．

Fig. 2 Architectures of the proposed method. The noise gen-

eration model Gn (·) randomly samples the noise.

3.1 敵対的学習による雑音生成モデルの学習
敵対的学習アルゴリズムにより雑音生成モデルGn (·)を

学習する．Gn (·)の入力は，既知の事前分布からランダム
生成された変数 n = [n⊤

1 , · · · ,n⊤
t , · · · ,n⊤

Tn
]⊤ である．nt

は，フレーム t において，事前分布からランダム生成さ
れたベクトルである．Gn (·)は，観測雑音 yn と生成雑音
ŷn = Gn (n)を識別する雑音識別モデルDn (·)と交互に更
新される．Gn (·)の損失関数 L(G)

GAN (·)と，Dn (·)の損失関
数 L(D)

GAN (·)は，それぞれ次式で示される．

L(G)
GAN (ŷn) =− 1

Tn

Tn∑

t=1

logDn(ŷn,t) (4)

L(D)
GAN (yn, ŷn) =− 1

Tn

Tn∑

t=1

logDn(yn,t)

− 1

Tn

Tn∑

t=1

log
(
1−Dn(ŷn,t)

)
(5)

敵対的学習は，ynと ŷnの分布間の近似 Jensen-Shannon

divergenceを最小化する．学習後のGn (·)は，既知の事前
分布を観測雑音の分布に変形する役割を持つ．

3.2 雑音生成モデルを用いた音声合成モデル学習
音声と雑音の位相情報を無視して，振幅ドメインにおけ

る加法性が成り立つと仮定する．学習済みのGn (·)を用い
て，次式の損失関数を最小化するように，音声合成モデル
Gs (·)を学習する．

LMSE (ŷns,yns) =
1

T
(ŷns − yns)

⊤ (ŷns − yns) (6)

ŷns = ln (exp ŷs + exp ŷn) (7)

ただし，ここでの ŷnの系列長は T であることに注意する．
生成時には，ŷs = Gs (x)を，合成音声の対数振幅スペク
トルとする．合成音声波形は，Griffin-Limの位相復元アル
ゴリズム [19] を用いて生成する．
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図 3 観測雑音（上）と生成雑音（下）のスペクトログラム．生成雑
音は，各フレームごとに独立に生成している．

Fig. 3 Spectrograms of observed noise (above) and generated

noise (below). The generated noise is sampled frame by

frame independently.

3.3 考察
提案法は，明示的な確率分布を定義せず，その経験分布

を Generative Adversarial Network (GAN)の枠組みを用
いて表現する．故に，musical noiseなどの歪みを低減し，
また，Fig. 3に示すように，部分的に誤りを観測できるも
のの観測雑音を効果的に表現できる．雑音生成モデルは，
各フレームごとに独立な定常雑音スペクトルを生成する
が，条件付き GAN [20] やリカレント構造を持った neural

network生成モデルの導入により，コンテキスト依存性・
時間構造の考慮が可能である．

4. 実験的評価
4.1 実験条件
利用する音声データは，無響室にて収録された，日本人

女性 1名による約 3000文である．雑音環境下音声は，こ
の収録音声データに対して白色雑音を人工的に加算したも
のとする．評価データは ATR 音素バランス 503文 [21] J

セット 53文である．学習データのサンプリング周波数は
16 kHzである．フレーム分析の窓長，シフト長，FFT長
は，それぞれ，400サンプル (25 ms), 80サンプル (5 ms),

512サンプルとする. 窓関数はハミング窓とする．音声合
成モデル及び雑音生成モデルは，動的特徴量を含まない
257次元の対数振幅スペクトルを予測する．合成音声波形
は，予測した対数振幅スペクトルに対して Griffin-Limに
よる位相復元 [19] を施し生成する．ただし，予備実験よ
り，従来法と提案法ともに合成音声に残留雑音が含まれる
ことが確認されたため，従来法と提案法の生成した振幅ス
ペクトル系列に対して，音声成分を知覚的に歪ませない程
度の spectral subtractionを適用した．ケプストラム [22]，
系列内変動 [23]，変調スペクトル [3] に基づく強調処理は
行わない．コンテキスト特徴量は 444次元のベクトルであ
り，439次元の言語特徴量，3次元の継続長特徴量，連続対
数 F0，及び有声無声ラベルである．実応用時にこの継続
長特徴量，連続対数 F0，及び有声無声ラベルは雑音環境下

音声から抽出されるが，この特徴抽出による音声品質の低
下 [24] をさけるため，本稿では，これらの特徴量を雑音加
算前の音声から抽出する．学習時には，コンテキスト x及
び雑音環境下音声の対数振幅スペクトル yns を，0平均 1

分散に正規化する．生成時には，ŷs = Gs (x)を生成した
後，yns の統計量を用いて元のスケールに戻す．この処理
は本来，不良設定問題であるため（yns のスケーリングの
みが既知で，その構成要素である ynと ysをスケーリング
するため），この正規化処理・スケーリング処理は，今後改
善する必要がある．雑音生成モデルに入力される nt は各
フレーム毎に 100次元ベクトルであり，各次元の値は一様
分布からランダムに生成される．音声合成モデルの学習時
には，非音声区間の 90%を除外する．音声合成モデル，雑
音生成モデル，雑音識別モデルは，それぞれ Feed-Forward

neural networkで記述され，従来法と提案法で同様の音声
合成モデルを使用する．各モデルの隠れ層数は 3，隠れ層
の素子数は 512，隠れ層の活性化関数は,leaky ReLU [25]

である．音声合成モデルと雑音生成モデルの出力層の活性
化関数は,線形関数である. 雑音識別モデルの出力層の活性
化関数は,sigmoid関数である. DNNのモデルパラメータ
は乱数で初期化する．最適化アルゴリズムには AdaGrad

[26] を使用する．

4.2 主観評価結果
実験的評価では，以下の 2手法を比較する．本評価は，

ボコーダフリー音声合成の枠組みにおける比較を目的とす
るため，ボコーダを用いる合成法を対象から除外する．
• SS+MSE: spectral subtractionを施した後，平均二
乗誤差最小化により音声合成モデルを学習

• Proposed: 提案法
SN比は，CPJDコーパス [7] において多く含まれる 0dB，
5dB，10dBとする．ただし，音声認識のための雑音抑圧に
おいて音声歪み（または残留雑音量）と音声認識精度の関
係性が知られており [27] ，同様の議論が音声合成におい
ても必要であると思われる．そこで，spectral subtraction

における β を，0.5, 1.0, 2.0, 5.0に設定する．β の値が小さ
いほど音声歪みは小さく，β の値が大きいほど音声歪みは
大きい．評価として，各 SN比，各 β の設定において，従
来法と提案法の合成音声の自然性に関するプリファレンス
ABテストを実施する．評価は我々のクラウドソーシング
評価システム上で実施し，評価者には，より不快でなく，
かつ，より自然な音声を選択させた．評価人数は各評価に
対して 25人，計 300人である．
Fig. 4から Fig. 6にそれぞれ，0dB，5dB，10dBの SN

比における結果を示す．図より，全設定において提案法の
スコアが従来法のスコアを上回っていることが分かる．ま
た，全設定において，従来法と提案法のスコア間の p値が
10−6 を下回っているため，提案法の有効性が示された．
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図 4 合成音声品質に関するプリファレンススコア (SNR = 0 dB)

Fig. 4 Preference scores on synthetic speech quality (SNR =

0 dB).
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図 5 合成音声品質に関するプリファレンススコア (SNR = 5 dB)

Fig. 5 Preference scores on synthetic speech quality (SNR =

5 dB).
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図 6 合成音声品質に関するプリファレンススコア (SNR = 10 dB)

Fig. 6 Preference scores on synthetic speech quality (SNR =

10 dB).

0dB の結果（Fig. 4）において，β を大きくすると従
来法のプリファレンススコアが悪化していることが分か
る．これに関して我々は，SN 比が低い場合に，spectral

subtractionにより生じた過剰な音声歪みが，音声合成品質
を劣化させることを確認している．

5. まとめ
本稿では，雑音環境下音声を用いた高品質音声合成のた

めに，雑音を確率的に生成する雑音生成モデルを導入し，

雑音加算過程を考慮した音声合成モデル学習法を提案した．
雑音生成モデルは，敵対的学習を用いて，観測される定常
雑音の確率分布を表現するように学習され，音声合成モデ
ルは，その生成スペクトルと雑音生成モデルの生成したス
ペクトルの和が，雑音環境下音声のスペクトルに一致する
ように学習される．実験的評価では，spectral subtraction

による雑音抑圧と通常の音声合成モデル学習を組み合わせ
た従来法と比較して，提案法が有意に合成音声品質を改善
させることを明らかにした．
今後の予定として，nonnegative matrix factorizationの

アクティベーション行列などによる時間変動のモデリング
[28]や，雑音混入強度の導入などが挙げられる．また，ボ
コーダを使用する合成方式との比較，クリーン音声を用い
た適応学習を行う．
謝辞: 本研究の一部は，JSPS科研費 16H06681及びセコ

ム科学技術支援財団の助成を受け実施した．
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