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Generative adversarial training of the noise generation model for

speech synthesis using speech in noise
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Fig. 1 Procedures of speech synthesis training using noisy
speech. In the conventional way, noise reduction is first
performed, then, the speech generator (i.e., acoustic
model) is trained to predict the noise-reduced speech
parameters. Our method directly predicts the noisy

speech parameters, considering noise addition process.
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Fig. 2 Architectures of the proposed method. The noise gen-

eration model G, (-) randomly samples the noise.
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Fig. 3 Spectrograms of observed noise (above) and generated

noise (below). The generated noise is sampled frame by

frame independently.
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Fig. 4 Preference scores on synthetic speech quality (SNR =
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