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概要

本論文では，補聴器の両耳に装備されたマイクロホンに，スマートフォンのマイクロホン
を加えた分散マイクロホンアレー補聴器システムを新たに提案する．さらに，本論文では既
存のブラインド音源抽出 (blind speech extraction: BSE)手法の雑音情報を用いた半教師あり手
法への拡張を行う．BSEとは，音声と雑音との混合信号から，音源及び混合系に関する事前
情報を用いずに音声のみを抽出する技術である．これまで多くのブラインド音源分離手法が
BSEに適用されており，中でも独立低ランク行列分析（independent low-rank matrix analysis:
ILRMA）は各方位に一つの点音源があると仮定し，混合信号を各方位に効率的に分離するこ
とを可能にしている．しかし，補聴器利用シーンを含めた実環境では，全方位に雑音源が存
在する拡散性雑音下である状況が考えられる．拡散性雑音下では，目的音源方位に雑音源も
存在するため，ILRMAでは目的音源と背後の雑音は原理的に分離できない．こうした問題を
解決するために，ランク制約付き空間共分散行列推定法が提案された．ランク制約付き空間
共分散行列推定法は各音源の空間伝達特性を表現する空間相関行列を推定するが，ILRMAで
推定された高精度な空間パラメータを用いることでより少ない計算コストで音源抽出を行う
手法である．
一般的に，これらの手法は複数のマイクロホンを利用することで多くの空間情報を得るこ

とができ，音源抽出の精度向上に繋がる．しかし，補聴器などのデバイスに多くのマイクロ
ホンを装備することは規模やコストの点で現実的ではない．一方で，近年スマートフォンを
はじめとする小型のマイクロホンを搭載した携帯端末が広く普及している．本論文では，ス
マートフォンに搭載されているマイクロホンを含めた補聴器システムを新たに提案する．ス
マートフォンに内蔵されたマイクロホンを用いることで，マイクロホンの総数も増え，さら
に目的音源に近い位置の空間情報を利用できる．補聴器を装着するユーザの頭や耳の形は人
によってそれぞれ異なり，またスマートフォンの位置も特定できない．BSEはこれらの不確
定な要素の多い状況に対しても柔軟に処理を行うことができるが，提案する補聴器システム
に対する有効性は不明である．そこで，スマートフォンを持った人を模したシミュレータを
作成し，データ収録を行い，収録したデータに対する既存手法の有効性を調査する．
一方で，補聴器は基本的に常に周囲の音を収録しており，会話シーンなどでは目的の音，す

なわち会話相手の声が発せられる直前に，雑音のみの情報を得られる．得られる雑音情報を
利用して音源抽出を行うことでさらなる品質の向上が期待できる．本論文では，ブラインド
の枠組みであるランク制約付き空間共分散行列推定法を雑音情報を用いた半教師ありの枠組
みへ拡張した新たな手法を提案し，従来の手法と比較して有効であることを示す．
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第1章 序論

1.1 研究背景
音声は人間にとって最も自然で利用しやすいコミュニケーション手段の一つである．近年

では，音声対話ロボットやテレビ会議システム，補聴器など，音声通信に関するシステムが
増加しており，音声による情報伝達が多く利用されている．しかし，周囲の雑音の影響で音
声の品質が劣化し，音声を用いたアプリケーションの円滑な利用を大きく阻害する．音声を
用いたアプリケーションの円滑な利用のためには，雑音下で目的の音を抽出する技術が必要
である．このような問題を解決するため，複数の音源からの信号が混合された観測信号から，
元の音源信号を推定する音源分離という技術が広く利用されている．
図 1.1に，音源分離の代表的な応用例を挙げた．一つ目は補聴器システムへの応用である．

補聴器システムは聴覚能力が低いユーザの聴覚を補助するための装置である．閑静な場所か
ら人通りが多い街中や駅などまで，様々な音環境の中での使用を想定し，ユーザの聴き取りた
い音を自然な形で提示するシステムであることが必要である．音源分離機構をシステムの内
部に組み込むことで，例えばユーザが会話するときに背景に存在する様々な雑音を抑圧し会話
相手の音声のみを抽出することが可能になる [1]．二つ目はスマートスピーカ，スマートフォ
ン，及びヒューマンオリエンテッドなシステムなどにおける音声認識システムへの応用であ
る．人間との対話型インタフェースに音声を用いるものは音声信号を自然言語へ変換する音
声認識を行う必要があるが，雑音が存在する環境では認識精度が悪化してしまう．音源分離
により所望の信号を取り出し，分離された信号に対して音声認識を行うことで，様々な状況に
おいて音声認識の精度を向上させることができる [2]．三つ目は会議の認識・理解である．会
議で議論された内容を録音し，情報としてまとめることにより後から把握することが容易に
なる．しかし大規模な会議では，録音された音声を書き起こすのにも人手を要する上，しばし
ば起こり得る発言のオーバーラップは聞き間違いを誘発する．録音音声を一人ひとりの発話
に分離し，それぞれに対して音声認識を行うことで適切に議事録の作成が可能になる [3–5]．
近年では，図 1.1 (c)のように，デバイスが複数利用されている状況で，それらに内蔵されて
いるマイクロホンを利用して音源の定位や分離を行う分散マイクロホンアレー処理に関する

1



(a) Hearing-aid device (b) Smart speaker

(d) Rescue robot(c) Meeting speech recognition 
and understanding systems

図 1.1: Applications of speech source separation.

研究も盛んに行われている [6–11]．四つ目は災害用のロボットへの応用である．人間の侵入
が困難な場所で，生存者の声を雑音環境下から検知するために音源分離が必要となる．生存
者の声を検知する上で，最もクリティカルな問題はロボット内部のモーターなどの駆動音で
ある．ロボット自身が発する雑音（エゴノイズ）が生存者の声の検知を大きく妨げるため，生
存者の声とエゴノイズを分離するための試みが行われている [12–14]．
音源分離技術は，マイクロホンの数が 1つ（単チャネル）か複数（多チャネル）か，及び

学習を事前情報無しで行う（ブラインド）か事前情報有りで行うかという 2つの観点から分
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類できる．多チャネルの場合は信号の音響的特徴に加えて空間的な情報を利用することが出
来るのに対し，単チャネルの場合は音響的特徴のみしか用いることが出来ないため，その性
能は限定的である．ブラインドでない古典的な音源分離手法の代表例として，Wienerフィル
タ [15]やビームフォーマ [16–18]がある．Wienerフィルタは音源分離に限らず，広範な種類
の時系列データをフィルタリングする手法である．最小平均二乗誤差規範により，目的音源
及びその他の雑音源のパワースペクトログラムを用い，目的音源の複素スペクトログラムを
推定する．Wienerフィルタが単チャネルの手法である一方で，ビームフォーマは多チャネル
の音源分離手法である．マイクロホンアレーの素子同士の位置関係や所望の音源の到来方位
などの情報を用い，目的音源を高精度に推定することが可能である．これらの手法の適用に
は目的音源や雑音源の音響的・空間的情報を要するため，それらの情報が十分な精度で得ら
れない場合には推定精度が劣化してしまう可能性がある．
ブラインド音源分離 (blind source separation: BSS) [19]は，上記の手法ように事前情報を必

要とせずに音源の分離を達成することができる．単チャネル及び多チャネルの観測信号から，
音響的特徴や空間的特徴をブラインドに推定するため，様々な音響シーンにおいて用いるこ
とが可能な技術である．単チャネルの場合のブラインド音源分離手法として，楽器音などの
音源のパワースペクトログラムが持つ特徴をモデル化することで分離を行う非負値行列因子
分解 (nonnegative matrix factorization: NMF) [20] が提案されている．一方で，多チャネルの
場合はさらに空間的特徴に関する手がかりを利用することができるため，より高精度な分離
を達成できる．多チャネルのブラインド音源分離は，時間領域における瞬時混合信号を分離
する独立成分分析 (independent component analysis: ICA) [21–23] 及び残響が存在する場合の
畳み込み混合信号への ICAの適用を可能にした周波数領域独立成分分析 (frequency-domain

ICA: FDICA) [24–26]に端を発する．FDICAは各音源が点音源であり空間的混合が線形時不
変システムで表されるという仮定に基づき，混合系の逆系である分離系を推定することによ
り音源分離を行う．さらに FDICAを改良した手法として，周波数間の音源パーミュテーショ
ン問題を解決した独立ベクトル分析 (independent vector analysis: IVA) [27–29]や音源のパワー
スペクトログラムをNMFにより表現する独立低ランク行列分析 (independent low-rank matrix

analysis: ILRMA) [30,31]などが提案され，より高精度な音源分離を達成することが可能になっ
た．これらの手法は分離音の歪みを抑えた分離が可能であるが，特に背景雑音として全方位
から到来する拡散性の雑音が存在する場合には理論的に拡散性雑音を完全に除去することは
不可能であり，分離された目的音には雑音成分が残留してしまう [32]．また，複数音源の混
合音から 1つの独立な成分を抽出する independent vector extraction (IVE) [33]も提案されてい
るが，背景雑音の相互相関は考慮するもののモデル自体は FDICA等で仮定されている点音源
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仮定に基づいているため，背景雑音が拡散性を有する場合の分離性能は限定的である．
上記の問題を解決するため，ビームフォーマや ICAに由来する系統の多チャネル音源分離

手法を前段で実行し，その出力音に対しWienerフィルタやスペクトル減算 [34]など単チャネ
ルのポストフィルタを適用することでさらに目的音と残留雑音の分離を行う手法が数多く提
案されている [35–39]．上記手法は残留雑音成分を抑圧するために，目的音とは別の方位に存
在する雑音成分の音響的特徴などを用いて後段のポストフィルタを構成する．しかしこれら
の推定手法は厳密には統計的枠組みに基づいておらず，その推定精度は限定的であるため，最
終的な分離音には大きな歪みが発生してしまう [40]．音声認識システムの前段処理として用
いる場合にはこの分離された音声信号の歪みはそれほど大きな悪影響をもたらさないが，人
間が受聴した場合には不快感を与えてしまうため，適切な分離が行えているとは言いがたい．
多チャネル空間線形フィルタと単チャネルポストフィルタを組み合わせた枠組み全体を統計
的にモデル化することで，多チャネル観測信号をより適切に表し，少ない歪みで目的音声を
抽出するブラインド音声抽出 (blind speech extraction: BSE)が達成できると考えられるが，そ
のような手法は今まで提案されてこなかった.

一方で，ICA系統以外の多チャネルのブラインド音源分離手法として，各音源の空間特徴を
表す空間相関行列 (spatial covariance matrix: SCM) [41]を用いるフルランク空間相関行列モデ
ルが提案されている．ICA系の手法は音源を分離するための線形時不変分離フィルタを推定
する一方で，フルランク空間相関行列モデルは各音源の空間的な混合特性を推定する．さらに
高精度な推定を達成するために各音源のパワースペクトログラムをNMFを用いて表す多チャ
ネル非負値行列因子分解 (multichannel NMF: MNMF) [42,43]が提案されており，その計算速
度を高速化するため，SCMの同時対角化可能性を仮定する高速多チャネル非負値行列因子分
解 (FastMNMF) [44, 45]も提案されている．しかし，これらのフルランクな SCMを推定する
手法は分離フィルタを推定する ICA系統の手法と比べて非常に計算コストが大きい上，初期
値に頑健でない，分離音が歪んでしまうなどの欠点を抱えており，実用上課題が残る [30]．
また，近年隆盛を見せている深層学習を用いた音源分離手法も多く提案されている [46–50]．

その多くは音響特徴を事前に学習するものであり，教師データとなる特定のクラスの音信号
を用意する必要がある．例えば人の音声や特定の楽器音などである．音響特徴は事前学習が
可能であるが，空間特徴はその汎化性が極めて低い．すなわち，マイクロホンアレーや部屋の
形状に依存する空間特徴はその形状の僅かな変化により大きく変わってしまうため，学習し
た空間特徴と分離時の空間特徴とのミスマッチが容易に起こり得る．そのため多くの多チャ
ネルの教師有り音源分離手法は，音響特徴は教師有りで学習する一方で，空間特徴はブライ
ンドで推定を行う．特に，補聴器の利用シーンでは想定される空間特徴は多岐にわたるため，
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深層学習に基づく分離では十分な効果が望めない．
補聴器などの処理後の信号を人が知覚するアプリケーションなどでは，計算コストが大き

いことや，空間特徴の違いによる性能劣化は致命的である．このような問題を解決するため，
目的音声と背景に存在する拡散性雑音の空間特性を適切にモデル化し，少ない計算コストか
つ高い雑音抑圧性能で目的音声を抽出する手法として，ランク制約付き空間共分散行列推定
法が提案されている [51,52]．拡散性雑音中に点音源である音声が存在する場合に ICA系統の
線形時不変分離手法を用いると，目的音声の方位は正確に推定できることが先行研究で指摘
されている [53]．ランク制約付き空間共分散行列推定法は，まず前段に ICA系統の中でも最
も高い性能を誇る ILRMAを用い，そこで得られた目的音声と雑音の一部の空間特性から，目
的音声方向に存在する雑音成分を推定する．
また，深層学習に基づく音源分離が目的音のデータで学習するのに対し，目的音以外の情報

から学習を行い分離を行う半教師ありアプローチの音源分離手法も提案されている [14,54,55]．
中でも，基底共有型 ILRMA (basis-shared ILRMA :BS-ILRMA) [14]と呼ばれる手法は，高品
質な BSSである ILRMAを半教師ありアプローチへ拡張した手法である．BS-ILRMAは，索
状の災害用ロボットのために元々提案された手法であり，ロボット自身が発するエゴノイズか
ら生存者の声を分離する．目的音声の教師信号は得られないが，エゴノイズは前もって収録
できるため，半教師ありの枠組みとして利用できる．また，BS-ILRMAは深層学習のように
様々なパターンかつ大量のデータは必要なく，前もって収録した雑音信号のみを用いる．さ
らに，誤差逆伝搬法も必要ないため，計算コストを増加させることなく．ブラインドでの音
源分離に比べて高い分離性能を達成することが可能となる．

1.2 本論文の目的
本論文では，補聴器システムに焦点を当てる．図 1.1 (a)に示したように，音源分離の補聴

器システムへの応用がなされる一方で，図 1.1 (c)のようにマイクロホンを複数内蔵したデバ
イスがある状況下を対象にした分散マイクロホンアレー処理に基づく音源分離も広く研究さ
れている [56–65]．分散マイクロホンアレー処理は，その場に存在するマイクロホンを利用し
てアレー処理を行えるため，得られる音源情報も多くなり，さらに，広い範囲の空間情報も得
ることができる．近年はスマートフォンが広く普及しており，会議シーンに限らず様々な場
面で分散マイクロホンアレー処理が行える．こうした背景から，本論文では，両耳のマイク
ロホンだけでなくスマートフォンに内蔵されているマイクロホンも含めた分散マイクロホン
アレー補聴器システムを新たに提案する．以下，提案補聴器システムと呼ぶ．補聴器を装着
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するユーザの頭や耳の形は人によってそれぞれ異なり，またスマートフォンの位置も特定で
きない．BSEはこれらの不確定な要素の多い状況に対しても柔軟に処理を行うことができる
ため，提案補聴器システムには BSEを実装する．ただし，提案補聴器システムに既存の BSE

手法が有効に動作するかは不明である．本論文では，提案補聴器システムに実装する BSE手
法として，実環境にも有用で計算コストの少ないにランク制約付き共分散行列推定法を用い
る．そのため，提案補聴器システムを用いてデータ収録を行い，収録したデータに対してラ
ンク制約付き共分散行列推定法の音声抽出性能を評価し，ILRMAに比べ有効な手法であるこ
とを示す．さらに，提案補聴器システムにおいても，マイク数の増加及び目的音源に近い位
置の空間情報が利用できるという 2点が音源抽出に優位に寄与しているかを ILRMAによる
分離を行なって調査する．
補聴器を用いて会話するシーンでは，会話が始まる直前まで雑音のみが存在する．この状

況を利用して，会話直前の雑音を収録することができる．事前に雑音のサンプルが利用でき
るため，提案補聴器システムにも BS-ILRMAのような半教師ありアプローチを組み込むこと
が可能になる．ただし，BS-ILRMAは元来災害用ロボットのために提案された手法である．
生存者の声とエゴノイズの分離タスクと比較して，提案する補聴器タスクは雑音の種類が多
いなどいくつか分離に不利な要素が考えられる．こうした不利な条件下でも，BS-ILRMAが
有効に動作することを確認し，提案補聴器システムに対しても半教師ありアプローチが利用
できることを示す．一方で，1.1節で述べたようにランク制約付き空間共分散行列推定法は，
前段に ILRMAを用いた初期化を行い，一部のパラメータを推定している．提案補聴器シス
テムで収録したデータに対するBS-ILRMAの有効性を示したのち，BS-ILRMAをランク制約
付き空間共分散行列推定法の初期化方法に用いて，より高品質な音源抽出が達成できること
を示す．
ランク制約付き空間共分散行列推定法は，ブラインドで雑音の SCMを推定している．上記

に述べたとおり，補聴器利用シーンでは事前に雑音のサンプルが利用できるため，ランク制
約付き空間共分散行列推定法の雑音 SCMの推定に対しても雑音のサンプルを用いることが可
能になる．従って，本論文では最後に，ブラインドのランク制約付き空間共分散行列推定法
を，雑音を用いて半教師ありアプローチへ拡張した手法を提案する．本論文では半教師あり
ランク制約付き空間共分散行列推定法とする．半教師ありランク制約付き空間共分散行列推
定法の提案補聴器システムのデータに対する有効性を示す．
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1.3 本論文の構成
本論文の構成は以下の通りである．第 2章では，本論文で取り扱う既存の音源分離手法に

ついて述べる．具体的には，ブラインドの手法として，ILRMA及びランク制約付き空間共分
散行列推定法について，半教師あり音源分離手法として BS-ILRMAについて述べる．第 3章
では，新たな補聴器システムとして，両耳のマイクロホンだけでなくスマートフォンのマイ
クロホンを含めた分散マイクロホンアレー補聴器システムを提案する．第 4章では，提案補
聴器システムに対して，ランク制約付き空間共分散行列推定法が適用可能であるか評価実験
により評価する．さらに．提案補聴器システムによりもたらされた，マイク総数の増加及び
目的音源に近い位置の空間情報が利用可能という 2点が優位に働いているかを評価する．第
5章では半教師あり音源分離手法である BS-ILRMAの提案補聴器システムに対する有効性を
示す．その後，BS-ILRMAをランク制約付き空間共分散行列推定法の初期化に用い，さらに
高品質な分離を達成することを示す．第 6章では，元来ブラインドの枠組みであったランク制
約付き空間共分散行列推定法を半教師ありアプローチへ拡張した手法を提案する．第 7章で
は，半教師ありアプローチへ拡張したランク制約付き制約付き空間共分散行列推定法の，提案
補聴器システムのデータに対する有効性を示す．最後に，第 8章で，本論文の結論を述べる．
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第2章 既存手法

2.1 はじめに
本章では，本研究で取り扱う音源分離手法について述べる．まず，2.2節で基本的なBSSの

定式化を行う．次に，ブラインドの枠組みの手法として，2.3節にて state-of-the-artな手法で
ある ILRMA [30, 31]及び，2.4節にて実環境のように拡散性雑音が存在する状況で有効なラ
ンク制約付き空間共分散行列推定法 [51, 52]について述べる．最後に，2.5節では，半教師あ
りの枠組みの手法として，ILRMAを半教師ありアプローチへ拡張した BS-ILRMA [14]につ
いて述べる．

2.2 定式化
N 個の音源信号をM 個のマイクロホンで収録し，観測した信号を分離することを考える．

複素時間周波数成分における音源信号 sij，観測信号 xij，及び分離信号 yij をそれぞれ次の
ように定義する．

sij = (sij,1, . . . , sij,N )⊤ ∈ CN (2.1)

xij = (xij,1, . . . , xij,M )⊤ ∈ CM (2.2)

yij = (yij,1, . . . , yij,M )⊤ ∈ CN (2.3)

ここで，i = 1, . . . , I，j = 1, . . . , J，及びn = 1, . . . , Nはそれぞれ周波数ビン，時間フレーム，及
び音源信号のインデクスである．·⊤は転置記号を表す．マイク数が音源数以上 (M ≥ N)かつ
各音源が方向性の点音源であり，短時間フーリエ変換 (short-time Fourier transform: STFT)の窓
長が残響時間より十分短い場合，各周波数ビンにおいて混合行列Ai = (ai,1 · · ·ai,N ) ∈ CM×N

が存在し，次のように書ける．

xij = Aisij (2.4)
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ただし，ai,nは周波数 iにおける音源 nのステアリングベクトルである．N 個の音源のソース
イメージ（音源から音が発されて空間を伝搬する際の信号）を cij = (cij,1, . . . , cij,N )⊤ ∈ CM

とすると，式 (2.4)は以下のように書き換えられる．

xij =
∑
n

cij,n (2.5)

cij,n = ai,nsij (2.6)

すなわち，Aiの各列ベクトルは各音源からマイクロホンへの伝達特性を表すベクトルである．
M > Nである場合は主成分分析などの線形次元削減を情報を失わずに施すことができるため，
以下ではM = N と仮定する．M = N かつAiが正則である場合，Aiの逆行列W i ∈ CN×M

を推定することで，次のように分離信号が得られる．

yij = W ixij (2.7)

2.3 ILRMA

ILRMAでは，各時間周波数フレームにおける音源 nの成分が　

sij,n ∼ Nc (0, rij,n) (2.8)

なる単変量複素ガウス分布に従い生起する確率生成モデルを仮定する．rij,n > 0は時変な分
散であり，音源のパワースペクトログラムに対応する．さらに，rij,nはNMFを用いてモデル
化される.

rij,n =
L∑
l=1

til,nvlj,n (2.9)

ここで，til,n ≥ 0，vlj,n ≥ 0は NMF変数であり，l = 1, . . . , Lは NMF基底のインデクス，L

は NMFの基底数である．この時 sij は多変量複素ガウス分布に従い，式 (2.4)，式 (2.8)及び
式 (2.9)と多変量複素ガウス分布の再生性より，xij も多変量複素ガウス分布

xij ∼ Nc

(
0,
∑
n

rij,nai,na
H
i,n

)
(2.10)
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に従う．ここで，rij,nは音源 nの音源モデルに相当し，非負実数である NMF変数の til,nと
vlj,nを用いて音源パワーのスペクトログラムを低ランク近似したものである．また，ai,nは
ステアリングベクトル，即ち音源 nにおける空間基底から構成されるランク１空間相関行列
であり，音源 nの空間モデルに相当する．·Hはエルミート転置を表す．NMF変数 til,n，vlj,n

及び分離行列W i = A−1
i = (wi,1 · · ·wi,N )Hは次の負対数尤度関数を反復法に基づき最小化

することで推定される．

L(Θ) =
∑
i,j,n

(
|yij,n|2∑
l til,nvlj,n

+ log
∑
l

til,nvlj,n

)
− 2J

∑
i

log |detW i|+ const. (2.11)

ここで，Θ = {W i, til,n, vlj,n}は目的変数の集合であり，const.は目的変数に依存しない項で
ある．分離フィルタW iに関しては，反復射影法 [29, 66]という手法に基づき次のように更
新される．

Gi.n =
1

J

∑
j

1

rij,n
xijx

H
ij (2.12)

wi,n ← (W iGi,n)
−1en (2.13)

wi,n ← wi,n(w
H
i,nGi,nwi,n)

− 1
2 (2.14)

ここで，en ∈ RN はN 次の単位行列 EN の n番目の列ベクトルである．NMF変数に関して
は，|yij,n|2と

∑
l til,nvlj,nの間の板倉斎藤ダイバージェンス [67]の最小化に基づき，次の更

新式を得る．

til,n ← til,n

√√√√√√√√√√
∑

j

|yij,n|2(∑
l′ til′,nvl′j,n

)2vlj,n
∑

j

1∑
l′ til′,nvl′j,n

vlj,n

(2.15)

vlj,n ← vlj,n

√√√√√√√√√√
∑

i

|yij,n|2(∑
l′ til′,nvl′j,n

)2til,n
∑

i

1∑
l′ til′,nvl′j,n

til,n

(2.16)

式 (2.12) –式 (2.16)に基づく更新において，反復による負対数尤度関数の単調非増加性が成
り立つため，収束の保証された最適化を行うことが出来る．
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式 (2.6)を用いれば，各音源のソースイメージの分散共分散行列は次のように表せる．

E[cij,ncH
ij,n] = E[|sij,n|2ai,na

H
i,n] (2.17)

= rij,nai,na
H
i,n (2.18)

従って，音源 nの空間共分散行列はRi,n = ai,na
H
i,nなるランク 1の行列として表現される．

これのような理由から，IVAや ILRMAのモデルはランク 1空間モデルと言われる．

2.4 ランク制約付き空間共分散行列推定法
2.4.1 動機

ランク制約付き空間共分散モデル推定法は 1個の方向性目的音源と拡散性雑音が混合して
いる状況を対象とした手法である．ILRMAなど空間共分散行列をランク 1空間モデルとして
扱う手法では，各音源が点音音源として仮定している．そのため，拡散性雑音の各音源を点音
源として見なすことができないため，原理的に目的音源を抽出することができない [32]．こ
れに対し，拡散性雑音をフルランクの空間共分散行列でモデリングするMNMFや FastNMF

を用いることが妥当であると考えられる．しかし．フルランクの空間相関行列を推定するこ
とはランク 1の空間相関行列を推定することと比べ，より大きな計算コストを必要とする．さ
らに，パラメータ数が多いため性能は ILRMAよりも初期化に関して頑健でない [31]．また，
各パラメータを ILRMAによる推定値で初期化する手法も提案されているが，そのモデルの
複雑さから，推定精度の向上は限定的である．方針として，ILRMAによって得られた各音源
の空間基底，及びそれによって構成されるM 個のランク 1空間相関行列を用い，拡散性雑音
のフルランク空間相関行列を推定する．これは，拡散性雑音中の目的音源抽出タスクにおい
て，ILRMAは目的音源の推定に対する精度は望ましくない一方，拡散性雑音は非常に高い精
度で推定できることに由来する [51]．また，この現象は，ILRMAの分離音間の独立性最大化
の結果，雑音を推定する分離フィルタが点音源である目的音源を正確に打ち消すヌルビーム
フォーマを形成するからである [53]．ランク制約付き空間共分散行列推定法はまず，ILRMA

を観測信号 xijに適用し，1個の目的音と雑音が混ざった信号とM − 1個の雑音のみの信号を
得る．次に，得られた信号から空間相関行列を推定するが，ILRMAで得られる拡散性雑音の
空間相関行列は目的音源方位の分だけランクが 1つ不足する．これを補うよう確率的定式化
を行い，パラメータを推定する．最後に多チャネルWinerフィルタを構成し，目的音源方向
の拡散性雑音を低減する．本手法のアルゴリズムはいくつかの拡張及び高速化がなされてい
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る [52]が，本論文では最も基本的な，多変量複素Gauss分布を観測信号の生成モデルに用い，
expectation-maximization (EM)アルゴリズム [68]によって最適化する方法について述べる．

2.4.2 多変量複素Gauss分布を用いた生成モデル

観測信号 xij を目的音源のソースイメージ hij = (hij,1, . . . , hij,M )⊤と拡散性音源のソース
イメージ uij = (uij,1, . . . , uij,M )⊤の和として次のように表す．

xij = hij + uij (2.19)

目的音源のソースイメージ hij は，ILRMAによって得られた空間基底 ai,1, . . . ,ai,N のうち
目的音源に対応するベクトル a

(h)
i =: ai,nh

と，目的音源のドライソース s
(h)
ij を用いて次のよ

うに表す．

hij = a
(h)
i s

(h)
ij (2.20)

s
(h)
ij |r

(h)
ij ∼ Nc

(
0, r

(h)
ij

)
(2.21)

p(s
(h)
ij |r

(h)
ij ) =

1

πr
(h)
ij

exp

(
−
|s(h)ij |2

r
(h)
ij

)
(2.22)

ここで，nhは目的音源に対応する音源インデクス，r(h)ij は目的音源の分散 (パワースペクトロ
グラム)である．目的音源の分散 r

(h)
ij はスパース性を有するとし，事前分布として逆ガンマ分

布を仮定する．

p(r
(h)
ij ;α, β) =

βα

Γ(α)

(
r
(h)
ij

)−α−1
exp

(
− β

r
(h)
ij

)
(2.23)

ここで，α > 0は形状母数，β > 0は尺度母数，Γ(·)はガンマ関数を表す．一方，拡散性音源
のソースイメージ uij は目的音源のソースイメージ hij とは独立な多変量複素ガウス分布に
従うと仮定する．

uij ∼ Nc

(
0, r

(u)
ij R

(u)
i

)
(2.24)

p(uij) =
1

πM (r
(u)
ij )M detR

(u)
i

exp

(
−
(r

(u)
ij )H(R

(u)
i )−1r

(u)
ij

r
(u)
ij

)
(2.25)
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ここで，r(u)ij は拡散性雑音のパワースペクトルに対応する時変な分散パラメータであり，R(u)
i ∈

CM×M は拡散性雑音のフルランクの空間相関行列である．ILRMAによって推定されたN 個
の分離音 ŷij,1, . . . , ŷij,N が得られているため，拡散性音源の空間相関行列R

(u)
i は次のように

表現できる．

R
(u)
i = R′(u)

i + λibib
H
i (2.26)

R′(u)
i =

1

J

∑
j

ŷ
(u)
ij

(
ŷ
(u)
ij

)H
(2.27)

ŷ
(u)
ij = W−1(wH

i,1xij , . . . ,w
H
i,(nh−1)xij , 0,w

H
i,(nh+1)xij , . . . ,w

H
i,Mxij)

⊤ (2.28)

ここで，R′(u)
i ∈ CM×M は ILRMAによって推定された雑音のランクM −1空間相関行列であ

る．R′(u)
i はM −1個の雑音成分から計算されるため，そのランクはM −1である．bi ∈ CM

はR′(u)
i の列ベクトルと biが線形独立となるようなベクトルであり，λiはスカラー変数であ

る．biは例えば anh
やR′(u)

i の零固有値に対応する単位固有ベクトルとする. ŷ(u)
ij はプロジェ

クションバック法 [69]によりスケールが補正されたM － 1個の拡散性雑音成分のソースイ
メージの和である．ここで，R′(u)

i で欠けている空間基底を補完及び復元するため，すから変
数 λi，目的音源の分散 r

(h)
ij ，拡散性雑音の分散 r

(u)
ij を同時に推定する．ILRMAによって推定

された，a
(h)
i ，R′(u)

i ，及び biは固定する．
以上のモデリングと，Gauss分布の再生性より観測信号は多変量複素 Gauss分布に従う．

xij |r(h)ij ∼ Nc

(
0,R

(x)
ij

)
(2.29)

R
(x)
ij = r

(h)
ij a

(h)
i (a

(h)
i )H + r

(u)
ij R

(u)
i (2.30)

このモデルにより，r
(h)
ij ， r

(u)
ij ，及び λiは観測信号の負対数尤度関数 L(Θ)を最小化すること

により，推定される．

L(Θ) =
∑
i,j

[
xH
ij(R

(x)
ij )−1xij + log detR

(x)
ij + (α+ 1) log r

(h)
ij +

β

r
(h)
ij

]
+ const. (2.31)

ここで，Θ = {r(h)ij , r
(u)
ij , λi}は目的変数の集合である．const.は目的変数に依存しない定数で

ある．この負対数尤度関数 L(Θ)を直接最適化することは困難であるため，次節に示す EMア
ルゴリズムを用いて最適化される [51]．
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2.4.3 EMアルゴリズムによる最適化

目的音声のドライソース s
(h)
ij と拡散性雑音のソースイメージ uij を潜在変数として，事後

確率 p(s
(h)
ij ,uij |xij ; Θ̃)に関する完全対数尤度の期待値をとることで，Q関数を次のように計

算できる．

Q(Θ; Θ̃) =
∑
i,j

[
−(α+ 2) log r

(h)
ij −M log r

(u)
ij −

r̂
(h)
ij + β

r
(h)
ij

− log detR
(u)
i −

tr
((

R
(u)
i

)−1
R̂

(u)
ij

)
r
(u)
ij

]
+ const. (2.32)

ここで，Θ = {r(h)ij , r
(u)
ij , λi}は最適化すべき目的変数であり，Θ̃ = {r̃(h)ij , r̃

(u)
ij , λ̃i}は目的変数

の現時点での値である．また，r̂
(h)
ij 及び R̂

(u)
i は Eステップにて次のように計算される事後分

布の十分統計量である．

R̃
(u)
i =R′(u)

i + λ̃ibib
H
i (2.33)

R
(x)
ij =r̃

(h)
ij a

(h)
i (a

(h)
i )H + r̃

(u)
ij R̃

(u)
i (2.34)

r̂
(h)
ij =r̃

(h)
ij −

(
r̃
(h)
ij

)2 (
a
(h)
i

)H (
R̃

(x)
ij

)−1
a
(h)
i +

∣∣∣∣r̃(h)ij xH
ij

(
R̃

(x)
ij

)−1
a
(h)
i

∣∣∣∣2 (2.35)

R̂
(u)
ij =r̃

(u)
ij R̃

(u)
i −

(
r̃
(u)
ij

)2
R̃

(u)
i

(
R

(x)
ij

)−1
R̃

(u)
i

+
(
r̃
(u)
ij

)2
R̃

(u)
i

(
R̃

(x)
ij

)−1
xijx

H
ij

(
R̃

(x)
ij

)−1
R̃

(u)
i (2.36)

Mステップでは，Q関数を各変数に関して座標上昇法を用いて最大化する．

r
(h)
ij ←

r̂
(h)
ij + β

α+ 2
(2.37)

λi ← bH
i

 1

J

∑
j

1

r̃
(u)
ij

R̂
(u)
ij

 bi (2.38)

R
(u)
i ← R′(u)

i + λibib
H
i (2.39)

r
(u)
ij ←

1

M
tr

((
R

(u)
i

)−1
R̂

(u)
ij

)
(2.40)
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2.5 BS-ILRMA

BS-ILRMAは人の進入が困難な災害環境で生存者の声を検知するロボットのための手法と
して提案された．災害用ロボットの中でも図 2.1に示すような柔軟索状ロボット [13]は災害
環境下において狭く暗い瓦礫の中に進入し，その中の生存者を発見するために開発されてい
る．このロボットは，機体の節に取り付けられた振動モータによって自身を振動させることに
より自走することが可能であり，コントロールデバイスやオペレータによる操作なしで移動す
ることができる．ロボットの目的は，ロボットの機体の周りに取り付けられたマイクロホンに
より，瓦礫の中に埋もれてしまった生存者の声をとらえることである．ところが，振動モータ
による振動が大きな内部雑音 (エゴノイズ)を発生させてしまうため，生存者をロバストに発
見するためには観測した生存者の声とエゴノイズを分離しなければならない．BS-ILRMAは
前もって収録されたロボットのエゴノイズを利用した半教師あり音源分離である．一方，補
聴器を使う状況においても，会話直前の数秒の雑音区間など事前に雑音のサンプルを利用す
ることで半教師あり音源分離を適用することが可能である．

BS-ILRMAはM = N の条件のうち，N ′ = M ′ = N − 1個の雑音源と 1個の目的音源が存
在する状況を仮定している．事前に得られるM ′チャネルの雑音のサンプル x(noise)

ij′ 及び分離
対象であるM チャネルの観測信号 x(mix)

ij′ を以下のように表す．

x(noise)
ij′ = (x(noise)

ij′,1 , . . . , x(noise)
ij′,m′ , . . . , x

(noise)
ij′,M ′) (2.41)

x(mix)
ij = (x(mix)

ij,1 , . . . , x(mix)
ij,M )⊤ (2.42)

ここで，j′ = 1, . . . , J ′及びm′ = 1, . . . ,M ′は雑音サンプルの観測信号のフレーム及びインデ
クスである．
単純に ILRMAを半教師ありにする場合，次のようなステップで半教師あり NMF [54, 55]

と ILRMAを組み合わる手法 (semi-supervised ILRMA: SS-ILRMA)が考えられる．

step 1 エゴノイズサンプル x(noise)
ij′ に対して ILRMAを用いて分離を行う．

step 2 step 1の最適化の結果から，学習済みの基底行列 T (noise)
m′ ∈ RI×L

≥0 が得られる．

step 3 もう一つの ILRMAで観測信号 x(mix)
ij を分離する．その際に，NMFによる音源モ

デルの学習において，M − 1チャネルを基底行列を学習済みの基底行列 T (noise)
n′ に

固定し，残りの 1チャネルのみを最適化する．

ここで，n′ = 1, . . . , N ′は雑音サンプルの音源のインデクスである．T (noise)
n′ 以外の他の変数

(教師エゴノイズの音源に対するアクティベーション行列，未知である音声の音源に対する基
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Vibration motors

Microphones

20 cm
20 cm

(a) (b)

図 2.1: (a) Hose-shaped rescue robot and (b) structure of rescue robot

底行列及びアクティベーション行列，及び分離フィルタW i)は半教師ありNMF [54,55]と同
様に最適化を行う. しかし，単純な半教師ありアプローチではW iと基底行列の間のスケール
の不定性が雑音の教師基底行列 T (noise)

n′ のスペクトル構造を崩壊させる可能性がある [14]．
この問題に対処するため BS-ILRMAが提案された．BS-ILRMAの概要を Fig. 2.2に示す．

ここで，W (noise)
i ∈ CN ′×M ′及びW (mix)

i ∈ CN×M は，雑音サンプル x(noise)
ij′ 及び観測信号 x(mix)

ij

に対する分離行列である．X (noise)
m′ ∈ CI×J ′ 及び Y (noise)

n′ ∈ CI×J ′ はそれぞれ x(noise)
ij′ 及び

y(noise)
ij′ = (y(noise)

ij′,1 , . . . , y(noise)
ij′,N ′ )⊤のm′及び n′番目のスペクトログラムである．X (mix)

m ∈ CI×J

及びY (mix)
n ∈ CI×J はそれぞれx(mix)

ij 及び y(mix)
ij = (y(mix)

ij,1 , . . . , y(mix)
ij,N )⊤のm及び n番目のスペ

クトログラムである．また，| · |.2は要素毎の 2乗を表す．T n′ ∈ RI×L
≥0 は雑音サンプルの音源に

対する共有基底行列，TN ∈ RI×L
≥0 は目的音源に対する非共有基底行列，V (noise)

n′ ∈ RL×J ′

≥0 及び
V (mix)

n ∈ RL×J
≥0 は Y (noise)

n′ 及び Y (mix)
n に対応するアクティベーション行列である．BS-ILRMA

は二つの ILRMAを使用する．一方ではW (noise)
i 及び y(noise)

ij′ を推定するため，ILRMAを雑音
サンプル x(noise)

ij′ に適用する．もう一方ではW (mix)
i 及び y(mix)

ij を推定するため，ILRMAを観
測信号 x(mix)

ij に適用する．最も重要な点は，雑音サンプルの音源に対する基底行列 T n′ は二
つの ILRMA間で共有されており，これらのモデルにおける全ての変数は同時に最適化され
ていることである．共有基底行列 T n′ は x(noise)

ij′ 及び x(mix)
ij の両方で類似したスペクトルを表
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L

⋮
⋮

⋮

⋮ ⋮

⋮ ⋮
Y (mix)

1
<latexit sha1_base64="fOZYEAdV9IhL9zf5pUIoWoBgkDU="></latexit>

⋮
|Y (mix)

1 |.2
<latexit sha1_base64="uZcfOerzFdggjL6hifzDRdJHxLw="></latexit>

⋮ ⋮

L ⋮

⋮

|Y (noise)
1 |.2

<latexit sha1_base64="kgghwTUdciFAPSrl7tQl9/Bpipw="></latexit>

Y (noise)
1

<latexit sha1_base64="rad0DTW0Ob8V9V/8pZwN+zShmAo="></latexit>

X(noise)
M 0

<latexit sha1_base64="jQtDTSz8jnegw8XMAWZXgtJhd90="></latexit>

X(noise)
1

<latexit sha1_base64="iN+bFr68KJhw4VddL+zsgsr3A9M="></latexit>

X(mix)
1

<latexit sha1_base64="E4rlX32BpaGLp+5ByyMVsNddtvI="></latexit>

X(mix)
M 0

<latexit sha1_base64="Nq8JrhmCUUah+tcNW8u0fgSpoyQ="></latexit>

X(mix)
M

<latexit sha1_base64="gzDmxJiXWNiQch08PzT9IWLD9Cc="></latexit>

W (mix)
I

<latexit sha1_base64="9sky0l9oKYWRy0BvIUbl1hTzYLM="></latexit>

W (mix)
1
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W (noise)
1
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W (noise)
I
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Y (noise)
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<latexit sha1_base64="sGtEJEoQ0t22P3Y1JypOC8r3akk="></latexit>
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N 0 |.2

<latexit sha1_base64="6Kj/QYlEWotFeSyTcoZ81ElOYFw="></latexit>

|Y (mix)
N |.2

<latexit sha1_base64="Ayw4es4+6D747Fi7fCxBfbMK/Hk=">AAAC63ichVFNTxRBEH0MKgt+sOiFxMvGXQxeNr24AfFE4OLJ8OEChl02M02DHeYrPb3j4uz8gb16MFEvmnAwXrzq1Qt/gER+gvGIiRcP1vROMIaoNZnp6lf1al5VOaErI83YyZA1fOHipZHC6NjlK1evjRcnrq9HQUdx0eCBG6hNx46EK33R0FK7YjNUwvYcV2w4+0tZfCMWKpKB/0gfhKLl2Xu+3JXc1gS1i5VeMxZcByp5nG43tehq5SXTnuzeSdvJw7S3nVRn0naxzKrMWOm8U8udMnJbDopf0MQOAnB04EHAhybfhY2Ini3UwBAS1kJCmCJPmrhAijHidihLUIZN6D599+i2laM+3bOakWFz+otLryJmCVPsmL1jp+yIvWdf2c+/1kpMjUzLAZ3OgCvC9nh/cu3Hf1kenRpPfrP+qVljF/eMVknaQ4NkXfABP3724nTt/upUcpu9Zd9I/xt2wj5TB378nR+uiNVXproyHIGnpmPPaPBpxgnFYsI5VR1MIZtuy+BZZwG6xnfMnHbOtJdQQZkyK8SgmZsVz2c2e7bQ8876TLV2t1pfqZcXFvNlF3ATtzBNleawgAdYRoO09PEBH/HJ8qzn1kvr9SDVGso5N/CHWYe/AL9frYY=</latexit>

Y (mix)
N

<latexit sha1_base64="OIRrp/EJ0zGH3KXBShhufcucMD0="></latexit>

Y (mix)
N 0

<latexit sha1_base64="E9La2cc2eP5CLKa8hH5iJeBEb9A="></latexit>

T n0
<latexit sha1_base64="G3FZgZWPVcGl6B4aovBr0oSnJGw="></latexit>

T n0
<latexit sha1_base64="G3FZgZWPVcGl6B4aovBr0oSnJGw="></latexit>

TN
<latexit sha1_base64="00EkY3MnlgI05jxCVjjinxyGyGY="></latexit>

V (mix)
n
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V (noise)
n0

<latexit sha1_base64="0AMSupYIsXZzd1JfMbpQDEOVg0U="></latexit>

M = N
<latexit sha1_base64="SPoTmrcfC9mhnzebbAxnGAAGM6E="></latexit>

N=N 0+1
<latexit sha1_base64="vaXRcQuGvqpYucdhkav40e5rMro="></latexit>

N 0
<latexit sha1_base64="STvE2NMKQuKNCDuWuE2M+VrkDDg="></latexit>

N
<latexit sha1_base64="0eS7kwl1cTM/KHQstzbK2uM3Nwg="></latexit>

図 2.2: Overview of BS-ILRMA, where upper and lower models are simultaneously optimized.

さなければならないため，雑音サンプルのスペクトルパターンは T n′ によって捉えられ，基
底行列 TN は結果的に残った目的音源のスペクトルパターンを表現する．

BS-ILRMAのコスト関数は，二つの ILRMAのコストの和として次のように定義される．

J =
1

N ′

{
N ′∑

n′=1

∑
i,j′

[
|y(noise)

i,j′,n′ |2∑
l til,n′v(noise)

lj′,n′

+ log
∑
l

til,n′v(noise)
lj′,n′

]
− 2J ′

∑
i

log | detW (noise)
i |

}

+
1

N

{
N∑

n=1

∑
i,j

[
|y(mix)

i,j,n |2∑
l til,nv

(mix)
lj,n

+ log
∑
l

til,nv
(mix)
lj,n

]

+
∑
i,j

[
|y(mix)

i,j,N |2∑
l til,Nv(mix)

lj,N

+ log
∑
l

til,Nv(mix)
lj,N

]

− 2J
∑
i

log | detW (mix)
i |

}
(2.43)

ここで，til,n′ 及び til,N はそれぞれ T n′ 及び TN の要素，v(noise)
lj,n′ 及び v(mix)

lj,n はそれぞれV (noise)
n′

及び V (mix)
n の要素を表す．共有されないパラメータの更新式は [30]と同じである．一方，共
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有基底 til,n′ に関して式 (2.43)を直接最小化することは困難であるため，補助関数法に基づき
補助関数を設計し，これを最小化することで局所最適解を得る [14]．

2.6 本章のまとめ
本章では，本論文で取り上げる手法について述べた．まず，基本的な BSS手法の定式化を

行った，次に，ブラインドの枠組みの手法として ILRMAについて述べ，実環境下で有効な手
法であるランク制約付き空間共分散行列推定法について述べた．さらに，半教師ありの枠組
みの手法として，BS-ILRMAについて述べた．
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第3章 提案補聴器システム

3.1 はじめに
本章では，分散マイクロホンアレーに基づく新たな補聴器システムを提案する．会議シー

ンでは，PCやスマートフォンなどマイクロホンを内蔵したデバイスが複数ある状況が考えら
れる．近年では，こうした状況を対象にした分散マイクロホンアレー処理に基づく音源分離
も広く研究されている．分散マイクロホンアレー処理は，その場に存在するマイクロホンを
利用してアレー処理を行えるため，得られる音源情報も多くなり，さらに，広い範囲の空間
情報も得ることができる．近年はスマートフォンが広く普及しているという事実もあり，補
聴器ユーザが所持するスマートフォンを用いることで，場面を選ばずに分散マイクロホンア
レー処理が行えると考えられる．本論文では，両耳のマイクロホンだけでなくスマートフォ
ンに内蔵されているマイクロホンも含めた分散マイクロホンアレー補聴器システムを新たに
提案する．本論文で提案する補聴器システムは，補聴器ユーザ自身が持つスマートフォンを
用いてマイクロホンアレーを構成する．将来的には，会話している相手のスマートフォンや，
その場にいる多くの人々が持つマイクロホン内蔵のデバイスを使い，さらに高品質な補聴を
達成できるなど，提案補聴器システムは高い拡張性を持つ．
想定している提案補聴器システムの利用シーンを図 3.1に示す．周囲に雑音がある中で，補

聴器のユーザが，ユーザ自身の所持するスマートフォンを胸の前方に向けて会話する．まず，
提案補聴器システムでデータの収集を行う．図 3.1に沿って，スマートフォンを持った人間を
模したダミーヘッドを用意する．ダミーヘッドの胸部にスマートフォンを取り付け，スマー
トフォンと両耳を含めた複数のマイクロホンで実環境を想定した収録を行う．ここで，分散
マイクロホンアレー処理には．マイクロホンの位置推定とデバイス間のサンプリング同期の
問題がある [56]．前者の位置推定の問題については，ブラインドの枠組みによる音源抽出で
あるためアレーの固定することで致命的な問題とならない後者のサンプリング同期の問題に
ついて，マイクロホンを同期するにはA-D変換器を用いて同期させる必要がある．A-D変換
器は高価かつ大規模であり，有線でつなぐ必要があるため，実際の利用シーンで利用するこ
とは困難である．本論文では，音源抽出に焦点を当ててA-D変換器を用いて全てのマイクロ
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図 3.1: View of conversation using proposed hearing-aid system. Hearing-aid user holds smart-
phone in front of user’s chest.

ホンを予め同期させるが，サンプリングの問題を解決するには，マイクロホンを同期させる
手法 [61,70]を適用することで解決できる．提案補聴器システムの音声抽出手法として，実環
境下のような拡散性雑音下でも，高速かつ高品質に動作するランク制約付き共分散行列推定
法を採用する．

3.2 システムの仕様
本研究では実環境下で対面する人との会話シーンを想定し，8個のマイクロホンを用いて

インパルス応答と拡散性雑音の収録を行う．収録のため，図 3.2 (a)のように，スマートフォ
ンを持った人間を模したダミーヘッドを作成した．ダミーヘッドの両耳には図 3.2 (b)及び (d)

のように，片耳に 3個ずつ，両耳を合わせて計 6個の無指向性マイクロホンを取り付けた．ス
マートフォンは，図 3.2 (c)のようにダミーヘッドの胸部から 20 cmの位置に取り付け，胸部
側に先端が向くよう 2個の無指向性マイクロホンを 4 cmの間隔で取り付けた．合計 8 chのマ
イクロホンを装備したダミーヘッドを用いて収録を行う．便宜上，図 3.2 (b)，(c)，(d)のよう
に各マイクロホンに対してナンバリングを行った．ここで，分散マイクロホンアレー処理を
行う上で．デバイス間のサンプリング同期の問題がある [56]が，本論文では音源抽出につい
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図 3.2: (a) Overall view of head-and-torso dummy, (b) right-ear microphone array, (c) smartphone’s
microphones, and (d) left-ear microphone array.

て焦点をあて，用いるマイクロホンは全て多チャネル A-D変換器を用いて予め同期させる．
また，分散マイクロホンアレーにおいて同期の問題を解決する手法もいくつか提案されてい
る [61, 70]．ダミーヘッドの身長は 170 cmとし，高さを調節した台に図 3.2 (a)のダミーヘッ
ドを乗せて収録した．また，ダミーヘッドと同身長の人との対話を想定し，床から口元まで
の高さを測り，スピーカの高さを 152 cmとした．

3.3 インパルス応答と拡散性雑音の収録
インパルス応答の計測方法として，時間引き伸ばしパルス (time stretched pulse: TSP)信号 [71]

を用いた．収録環境及び TSP信号の収録条件を表 3.1に示す．ダミーヘッドからスピーカへ
の距離を 75 cm, 100 cm, 150 cmに，角度は正面方向 (0◦)に加え左右にそれぞれに 20◦変化さ
せ，計 9パターンのスピーカ位置における TSP信号を計測した．収録場所は屋内の一室とし
た．実際にダミーヘッドとその正面方向 (0◦)にスピーカを配置した部屋の写真を図 3.3 (a)に
示す．収録時のダミーヘッドやスピーカの位置関係，及び計測する 9パターンのスピーカの
位置の概略図を図 3.3 (b)に示す．
雑音データの作成として，数人が自由に移動・会話している状況を想定し収録を行った．

約 20人の協力者を募り，自由に移動・発話してもらった．雑音源は目的話者より外に存在す
るとしているため，協力者にはダミーヘッド前方半径 150 cmの半円より外側を周回させた．
図 3.4に，拡散性雑音の収録風景を示す．
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表 3.1: Recording conditions and devices
Recording location Studio (see Fig. 3.3)

Reverberation time (T60) 300 ms

Microphone C417 PP (AKG)

Loudspeaker ADIVA11 (Anthony Gallo)

Audio interface 828x (MOTU)

Data format of TSP signal 48 kHz, 16 bit, WAVE file format

TSP length 65536 samples

Recording sampling freq. 48 kHz

Number of synchronous addition 20 times

Head-and-torso dummy

5.3 m

6.5 m

3.3 m

2.8 m

Head-and-torso dummy

-20° +20°
75 cm
100 cm
150 cm

(a) (b)

Loudspeaker

Head-and-torso 
dummy

図 3.3: (a) Sets for recording TSP signal in room and (b) room configuration. Position of loud-
speaker (mouth of conversation partner) for nine recording cases.
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図 3.4: View of noise recording. Approximate 20 people talk and walk around room freely.

3.4 本章のまとめ
本章では，両耳のマイクロホンだけでなくスマートフォンのマイクロホンも含めた新たな

分散マイクロホンアレー補聴器システムを提案した．ダミーヘッドを用いて，スマートフォ
ンを持った人間を模した装置を構築し，インパルス応答及び拡散性雑音の収録を行った．

23



第4章 提案補聴器システムへのBSE手法の利
用可能性及び分散マイクロホンアレーに
よる分離性能改善の評価

4.1 はじめに
本章では，実験提案補聴器システムに対する BSE手法の適用可能性と，提案補聴器システ

ムの有効性を評価するための実験を行う．提案補聴器システムは全く新しいアプローチであ
るため，既存のび BSE手法が有効に動作することは保証されていない．そのため，まず実環
境下で有効なランク制約付き空間共分散行列推定法の 3.3節で収録したデータに対する有効
性を調査する．ランク制約付き空間共分散行列推定法は式 (2.23)にある通り，形状母数 αと
尺度母数 βの 2つの内部パラメータを持つ．特に，形状母数 αは音源信号のパワースペクト
ルに対応する分散にスパース性を誘引するパラメータであり，処理後の品質に大きく関係す
ると考えられる．しかし，αの値と分離性能の関係は明らかにされておらず，この関係を明
らかにすることで実際の利用時により高品質な音源抽出が達成できると考えられる．そのた
め，本章の実験で，提案補聴器システムへの利用可能性と併せて形状母数 αの値と分離性能
の関係についても調査する．
一方，提案補聴器システムはスマートフォンのマイクロホンを利用することで，利用しな

い場合と比較して次の 2点で有利であると考えられる．

(a) マイクロホンの総数が増え，利用できる音源情報及び空間情報が多くなる．

(b) 目的音源に近い位置の空間情報が得られる．

実際にこれら 2点が優位に働いているかどうか，ILRMAによる分離を行い調査する．4.2節
では，一連の評価実験の条件を述べる．次に，4.3節では，収録したデータに対して ILRMA

とランク制約付き空間共分散行列推定法を適用・比較し，ランク制約付き空間共分散行列推
定法が提案補聴器システムに利用可能であることを示す．併せて，ランク制約付き空間共分
散行列推定法の内部パラメータ αと分離性能の関係を調査する．最後に，4.4節で，上で述べ
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表 4.1: Experimental conditions
Sampling frequency 16 kHz

FFT length 1024 sample (50% overlap)

Window Hamming window

Number of bases in low-rank model 10

Number of iterations in ILRMA 50

Initialization of W i in ILRMA Identity matrix

Number of iterations in rank-constrained SCM estimation 10

たスマートフォンの利用による 2つのメリットが，実際に作用しているか実験的に明らかに
する．

4.2 実験条件
本評価実験の目的は，両耳とスマートフォンのマイクロホンを用いた補聴器体系において，

実環境下での ILRMAとランク制約付き空間共分散モデル推定法を比較し，収録データに対す
るランク制約付き空間共分散モデル推定法の有効性について調査することである．音声デー
タベース JNAS [72]の女声データ 1文に 3.3節で収録したインパルス応答を畳み込んだもの
を目的信号とした．拡散性雑音には 3.3節で収録した雑音を用いた．ただし，使用したコー
パスデータのサンプリング周波数が 16 kHzであったため，48 kHzで収録したインパルス応答
及び雑音をダウンサンプリングした．実験するにあたり，入力 SNRは−10 dB, −5 dB, 0 dB，
ランク制約付き空間共分散モデル推定法における形状母数パラメータ αは 0.5, 1.1, 10, 20と
変化させ，尺度母数パラメータ β は 10−16 とした．ILRMAとランク制約付き空間共分散モ
デル推定法において観測信号を主成分分析を用いて白色化を行い，異なる乱数初期値で 10回
試行した．その他の条件を表 4.1に示す．以上の条件で，評価尺度として source-to-distortion

ratio (SDR)改善量 [73]を用いて分離性能を比較した．

4.3 収録データに対する既存手法の分離性能
入力 SNRが−10 dB，マイクロホン 1 (右耳外耳道付近,図 3.2参照)の，ILRMA及びランク
制約付き空間共分散行列推定法の平均 SDR改善量を図 4.1を示す．横軸はランク制約付き空
間共分散行列推定法の iterationを表す．ILRMAは反復 50回目の SDR改善量を示しており，
ランク制約付き空間共分散行列推定法の iterationに依存せず一定となっている．全ての場合
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図 4.1: Average SDR improvements for each iteration at microphone 1 under −10 dB input SNR
condition. Rows indicate distance from head-and-torso dummy to loudspeaker and columns indicate
direction.
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図 4.2: Average SDR improvements of ILRMA and rank-constrained SCM estimation after two
iterations at microphone 1 when target source is located at 0◦.
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smart-phone’s microphone
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図 4.3: Enabled microphones to evaluate effectiveness of proposed hearing-aid system by including
smartphone. Numbers of enabled microphones are (a) four (No. 1, 2, 7, and 8), (b) six (No. 1, 2, 3,
6, 7, and 8) not including smartphone’s microphones, and six microphones (No. 1, 2, 4, 5, 7, and 8)
including smartphone’s microphones.

においてランク制約付き空間共分散モデル推定法が ILRMAを上回っていることがわかる．ま
た，内部パラメータ αの値によって SDR改善量の変化に大きく違いが現れることが確認でき
た．内部パラメータ αは，大きいほど少ない反復で高い SDR改善量を達成し得る．ただし，
一定の反復回数を超えると SDR改善量が減少する傾向にあり，最適な反復回数が不明な場合
には，小さな αを設定して安定した分離を達成することも可能である．今回調査した範囲で
は，2～5回程度の少ない反復で高い SDR改善量を達成することが分かった．これにより，収
録データに対しても，ランク制約付き空間共分散モデル推定法は速く収束し，かつ高い SDR

改善量を達成できることが示された．
次に，角度を−20◦に限定し，各入力 SNRにおける SDR改善量の傾向について，同様に性

能を調査する．ただし，ランク制約付き空間共分散モデル推定法は上記の結果に基づき，SDR

改善量が概ね大きい反復 3回目の結果を用いて比較を行う．マイクロホン 1での平均 SDR改
善量の結果を図 4.2に示す．ランク制約付き空間共分散モデル推定法について，入力 SNRが
−10 dB，−5 dBの場合の SDR改善量が ILRMAと比較して大きい．このことから，ランク制
約付き空間共分散モデル推定法は低い入力 SNRの場合により高い音声抽出を達成することが
わかった．これは，低い入力 SNRでよりクリティカルになった雑音をランク制約付き空間共
分散モデル推定法が抑圧できているためと考えられる．
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図 4.4: Average SDR improvements of ILRMA for three patterns microphone arrays.

4.4 スマートフォンのマイクロホン利用による分離性能の改善
提案補聴器システムは両耳だけでなくスマートフォンに内蔵されているマイクロホンも用

いている．スマートフォンの利用によって，マイクロホンの総数が増え，目的音源に近い位
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置の空間情報が得られる．本節の実験で，これら 2つの利点が実際に分離性能の改善に寄与
しているかを調査する．そのために，ダミーヘッドに取り付けた計 8つのマイクロホンのう
ち，図 4.3に示す 3パターンのマイクロホンに限定して比較を行う．図 4.3 (a)と (b)の場合
で分離性能を比較することにより，マイクの総数が増えることによる効果を調査する．また，
図 4.3 (b)と (c)の場合で分離性能を比較することにより，目的音源に近い位置での空間情報
を得られる効果を調査する．ILRMAを用いて分離を行い，SDR改善量を用いて分離性能の
比較を行った．
結果を図 4.4に示す．結果から，4chで分離した場合の SDR改善量に比べ，6chで分離した

場合の SDR改善量がほとんどの場合で大きいことがわかる．さらに，スマートフォンのマイ
クロホンを使った場合の方が，使わなかった場合に比べて SDR改善量が高いことがわかる．
以上から，提案補聴器システムにおいて，スマートフォンのマイクロホンを利用することで，
マイクロホンの総数が増え，目的音源に近い位置の空間情報を利用できることによる分離性
能の改善効果が確認できた．

4.5 本章のまとめ
本章では，収録した実環境データに対する，ランク制約付き空間共分散行列推定法の有効性

を確認した．併せて，明らかにされていなかった内部パラメータと分離性能の関係を明らか
にした．さらに，提案補聴器システムにおいてスマートフォンのマイクロホンを利用するこ
とによる 2つの利点が，実際に分離性能の向上に寄与していることを実験的に明らかにした．
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第5章 提案補聴器システムへのBS-ILRMAの
利用可能性及びランク制約付き空間共分
散行列推定法への適用

5.1 はじめに
本章では，半教師あり音源分離の枠組みである BS-ILRMAの提案補聴器システムに対する

有効性を示す．さらに，ランク制約付き空間共分散行列推定法の初期化方法に BS-ILRMAを
利用して，さらに高品質な音源抽出が達成できることを示す．補聴器を用いて会話するシー
ンでは，会話が始まる直前の雑音のみのデータを収録することができる．また，事前に収録す
る雑音は会話直前の数秒であるため，分離時とアレーの配置を保存することができる．この
ため，提案補聴器システムにも BS-ILRMAのような半教師ありアプローチを組み込むことが
可能になる．ただし，BS-ILRMAは元々災害用ロボットのために提案された手法であり，提
案する補聴タスクは生存者の声とエゴノイズの分離タスクと比較して，表 5.1に示すように
3つの分離に不利な要素が考えられる．1つは雑音の種類が多いことである．エゴノイズの分
離タスクでは雑音はエゴノイズのみであるが，補聴タスクでは会話相手の声以外の声や，歩
行音など様々である．2つ目は雑音源までの距離である．エゴノイズはロボット自身が発す
るため雑音源までの距離が近い一方，補聴タスクでは遠方かつ全方位から拡散性の雑音が到
来する．3つ目は事前に得られる雑音情報の長さである．エゴノイズは事前に十分な長さを
収録することが可能であるが，補聴タスクでは会話直前の数秒程度である．こうした不利な
条件下でも，BS-ILRMAが有効に動作することを確認し，提案補聴器システムに対しても半
教師ありアプローチが利用できることを示す．一方で，ランク制約付き空間共分散行列推定
法は，初期化方法に ILRMAを用いた初期化を行い，一部のパラメータを推定している．提案
補聴器システムのデータに対するBS-ILRMAの有効性を示した後，BS-ILRMAをランク制約
付き空間共分散行列推定法の初期化方法に用いて，より高品質な音源抽出が達成できること
を示す．
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表 5.1: Difficulty of hearing-aid task compared with ego-noise suppression task

Ego-noise suppression task Hearing-aid task

Noise type Ego-noise (only) Voice or footstep, etc. (plural)

Distance from Micro-
phones to noise source

Close Far

Length of noise data we
can obtain in advance

Any Few seconds before conversation

5.2 収録データに対するBS-ILRMAの分離性能
まず，提案補聴器システムで収録したデータに対して，通常の ILRMA，雑音サンプルを用

いて事前に基底を学習して分離を行う SS-ILRMA，及び基底共有により雑音学習用と分離用
のモデルを同時に最適化する BS-ILRMAをそれぞれ適用し，分離性能を調査する．実験条件
は 4.2節と同様である．目的音声が発話される直前の 2秒間に雑音区間を設け，この 2秒の雑
音区間を学習に用いた．SS-ILRMAについては雑音の事前学習として，基底を 50回更新した
ものを使用した．異なる乱数初期値で 10回試行した．以上の条件で，評価尺度として SDR

改善量を用いて，マイクロホン 1 (右耳外耳道付近)での各角度及び異なる乱数初期値での結
果を平均して比較した．
結果を図 5.1に示す．まず，SS-ILRMAは ILRMAに比べて概ね高い SDR改善量を達成し

ているが，条件によって ILRMAに劣る場合がある．これは，事前に学習した基底行列と分離
時の基底行列のスケールの曖昧さが要因であると考えられる．一方，BS-ILRMAがほぼ全て
の場合において通常の ILRMAや SS-ILRMAに比べて高い SDR改善量を達成していることが
わかる．このことから，エゴノイズの分離タスクと比べて不利となる条件があるにも関わら
ず，提案補聴器システムに対しても BS-ILRMAが利用可能であることがわかった．さらに，
BS-ILRMAはランク制約付き空間共分散行列推定法の初期化方法にBS-ILRMAを用いること
で従来に比べ高品質な分離が期待できる．
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図 5.1: Average SDR improvements of ILRMA, SS-ILRMA, and BS-ILRMA under each input
SNR condition. Three figures show results when distance from head-and-torso dummy to target
source is set to (a) 75, (b) 100, and (c) 150 cm, respectively.
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5.3 BS-ILRMAをランク制約付き空間共分散行列推定法へ適用した場
合の性能評価

5.2節の結果を踏まえ，次に ILRMA，SS-ILRMA，BS-ILRMAのそれぞれを初期化方法と
してランク制約付き空間共分散行列推定法を適用した場合の分離性能について調査する．実
験データや ILRMA，SS-ILRMA，BS-ILRMAの条件は 5.2節と同様である．ランク制約付き
空間共分散行列推定法における形状母数パラメータ αは 20とし，尺度母数パラメータ β は
10−16とした．また少ない反復回数で高い分離性能を達成することが分かっているため，ラン
ク制約付き空間共分散行列推定法の反復回数が 2回目の結果を用いて比較した．

ILRMA, SS-ILRMA, BS-ILRMAと各手法を初期化方法として適用した場合のランク制約付
き空間共分散行列推定法の結果を図 5.2に示す．結果から全ての場合においてランク制約付
き空間共分散行列推定法を適用した場合に SDR改善量が向上している．中でも，BS-ILRMA

を初期値とした場合の SDR改善量が他の場合と比べて高いため，ランク制約付き空間共分散
行列推定法の初期化方法に BS-ILRMAを用いることでより高い分離性能を達成できることが
分かる．
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図 5.2: Average SDR improvements of rank-constrained SCM estimation initialized by ILRMA,
SS-ILRMA and BS-ILRMA, where number of iterations of rank-constrained SCM estimation was
two.
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5.4 本章のまとめ
本章では，収録した実環境データに対する，半教師あり音源分離法である BS-ILRMAの有

効性について調査した．さらに，ランク制約付き空間共分散行列推定法の初期化方法に BS-

ILRMAを適用した場合の分離性能を調査した．結果として，提案補聴器システムで収録した
データに対して，BS-ILRMAは ILRMAや SS-ILRMAと比較して高い分離性能を達成するこ
とを確認した．さらに，ランク制約付き空間共分散行列推定法の初期化方法に BS-ILRMAを
適用した場合も，ILRMA及び SS-ILRMAで初期化した場合と比較して高い分離性能を達成
することを実験的に明らかにした．
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第6章 ランク制約付き空間共分散行列推定法の
雑音教師ありアプローチへの拡張

6.1 はじめに
本章では，元々ブラインドの枠組みの音源抽出手法であるランク制約付き空間共分散行列

推定法を，半教師ありの手法へ拡張する．5章で述べたように，提案補聴器システムを使う
シーンにおいて，雑音情報が事前に得られ，半教師ありアプローチである BS-ILRMAが適用
可能である．また，ランク制約付き空間共分散行列推定法の初期化方法にBS-ILRMAを適用
し，さらに高品質な音源抽出を達成することを示した．以上から，ランク制約付き空間共分
散行列推定法に雑音教師信号を利用した手法に拡張することで，さらに高品質な音源抽出が
期待できる．

6.2 半教師ありランク制約付き空間共分散行列推定法
便宜上，教師信号である拡散性雑音のソースイメージを ŭij′ := x(noise)

ij′ と再定義する．教師
信号の雑音の SCM R̆

(u)
i は次のように計算できる．

R̆
(u)
i = E

[
ŭij′ŭ

H
ij′

]
(6.1)

=
1

J ′

∑
j′

ŭij′ŭ
H
ij′ (6.2)
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さらに，事前分布として推定する雑音の SCM R
(u)
i ∈ CM×M が逆行列ガンマ分布に従うと仮

定する．

R
(u)
i ∼ IMGM

(
α′, β′, R̆

(u)
i

)
(6.3)

p(R
(u)
i ) = C(α′, β′, R̆

(u)
i )|R(u)

i |
−(α′+M) exp

(
− 1

β′ tr
(
(R

(u)
i )−1

)
R̆

(u)
i

)
(6.4)

C(α′, β′, R̆
(u)
i ) =

(R̆
(u)
i )α

′

β′α′MΓ(α′)
(6.5)

また，

log p(R
(u)
i ) = const.− (α′ +M) log detR

(u)
i −

1

β′ tr
(
(R

(u)
i )−1R̆

(u)
i

)
(6.6)

ここで，IMGM (·, ·, ·)はM 次元の逆行列ガンマ分布であり，α′ > (M − 1)及び β′ > 0

はそれぞれ逆行列ガンマ分布の形状母数及び尺度母数である．また，const.はR
(u)
i に依存し

ない項である．雑音のソースイメージ uij は多変量複素ガウス分布であり，uij から構成され
る分散共分散行列はウィッシャート分布に従う．さらに，分散共分散行列の共役事前分布に
逆ウィッシャート分布が一般的に用いられるため，本論文では逆ウィッシャート分布を一般
化した逆行列ガンマ分布を事前分布とした．拡散性雑音の空間共分散行列のモデリングによ
り完全対数事後分布 L(xij , s

(h)
ij ,uij |Θ)は次のようにかける．

L(xij , s
(h)
ij ,uij |Θ) = log

∏
i,j

p(xij , s
(h)
ij ,uij |Θ)p(r

(h)
ij )p(R

(u)
i )

=
∑
i,j

log p(xij , s
(h)
ij ,uij |Θ) +

∑
i,j

log p(r
(h)
ij ) +

∑
i,j

log p(R
(u)
i )

=
∑
i,j

[
xH
ij(R

(x)
ij )−1xij + log detR

(u)
ij + (α+ 1) log r

(h)
ij +

β

r
(h)
ij

− (α′ +M) log detR
(u)
i −

1

β′ tr
(
(R

(u)
i )−1R̆

(u)
i

)]
+ const. (6.7)

ブラインドのランク制約付き空間共分散行列推定法と同様に EMアルゴリズムに基づき，完
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全対数事後分布 L(xij , s
(h)
ij ,uij |Θ)の期待値をとることで，Q関数を次のように計算できる．

Q(Θ; Θ̃) =
∑
i,j

[
−(α+ 2) log r

(h)
ij −M log r

(u)
ij −

r̂
(h)
ij + β

r
(h)
ij

]

+
∑
i

[
−(α′ +M + J) log detR

(u)
i − tr

(R(u)
i

)−1

 1

β′ R̆
(u)
i +

∑
j

1

r
(u)
ij

R̂
(u)
ij


]

+ const. (6.8)

次に，式 (6.8)をそれぞれの変数に関して偏微分し 0とおいて，Q関数の最大化を行う．ただし，
λiに関する最大化はQ関数に (Ri)

−1 = (R
(u)
i + λibib

H
i )

−1や log detR
(u)
i = log det(R

(u)
i +

λibib
H
i )という項が含まれているため，このままの形では行うことができない. そこで，(Ri)

−1

を λiに関する式として陽に表すための定理 [52] (claim 1)を用いることで，偏微分が困難な項
を次のように表せる．

log detR
(u)
i = log λi + const. (6.9)

(R
(u)
i )−1 = (R′(u)

i )+ +
1

λi
bib

H
i (6.10)

ここで，·+はMoore-Penroseの一般化逆行列を表す．従って，Q関数の λiに関する偏微分は
次のように表せる．

Q(λi) = −(α′ +M + J) log λi −
1

λi
bH
i

 1

β′ R̆
(u)
i +

∑
j

1

r
(u)
ij

R̂
(u)
ij

 bi + const. (6.11)

以上から，式 (6.11)を λiに関して偏微分し，0と置くことで以下の更新式を得る．

λi ←
1

α′ +M + J
bH
i

 1

β′ R̆
(u)
i +

∑
j

1

r
(u)
ij

R̂
(u)
ij

 bi (6.12)

6.3 本章のまとめ
本章では，元々ブラインドの音源抽出手法であったランク制約付き空間共分散行列推定法

を半教師ありの枠組みへ拡張した手法を提案した．事前に収録した雑音情報を利用し，拡散
性雑音の空間共分散行列に対して逆行列ガンマ分布を仮定し，新たな更新式を導出した．
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第7章 半教師ありランク制約付き空間共分散行
列推定法の評価

7.1 はじめに
本章では，半教師ありランク制約付き空間共分散行列推定法の有効性について調査する．ま

た，本手法の内部パラメータである α′及び β′と分離性能の関係についても調査する．初期化
方法に ILRMA，SS-ILRMA及び BS-ILRMAを使用したブラインドのランク制約付き空間共
分散行列推定法と，半教師ありランク制約付き空間共分散行列推定法を比較し，提案手法で
ある後者がより高品質な音声抽出を達成することを示す．

7.2 内部パラメータと音源抽出性能の比較
まず，半教師ありランク制約付き空間共分散行列推定法の内部パラメータ α′及び β′と分

離性能の関係について調査する．ブラインド及び半教師ありランク制約付き空間共分散行列
推定法の目的音源に関する内部パラメータ α及び β はそれぞれ 20及び 10−16とし，反復回
数を 30回とした．ブラインド及び半教師ありランク制約付き空間共分散行列推定法における
目的音源の分散に置いた分布の形状母数パラメータ αは 20とし，尺度母数パラメータ β は
10−16とした．その他の条件は 4.2節と同様とした．以上の条件で，α′を 200, 400, 800, β′を
1, 10000とそれぞれ変化させ，SDR改善量の関係を調査する．
目的音源の距離が 75 cmでの，α′の振る舞いと SDR改善量の関係に関する結果を図 7.1に

示す．結果から，入力 SNRに対して最適な α′があることがわかる．具体的には入力 SNRが
低い場合には小さい α′，入力 SNRが高い場合には大きい α′を設定すると，分離性能が高い
ことがわかる．また，入力 SNRが低い場合には，iterationに対して頑健な分離性能を達成す
ることがわかる．実環境では，目的音源と拡散性雑音の SNRは不明であることが多いため，
α′は 200程度の大きさに設定することで，比較的安定的な分離性能を達成できる．次に，β′

の振る舞いと SDR改善量の関係に関する結果を図 7.2に示す．結果から，β′を 1∼10000の
範囲では，SDR改善量に大きな差は見られないことがわかる．そのため，半教師ありランク
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制約付き空間共分散行列推定法を実環境で利用する場合でも，β′の値に関わらず，頑健に音
源抽出を行える．

7.3 半教師あり空間共分散行列推定法の音源抽出性能の比較
次に，半教師ありランク制約付き空間共分散行列推定法と従来手法であるブラインドのラ

ンク制約付き空間共分散行列推定法との比較を行う．比較手法は ILRMA，SS-ILRMA，及び
BS-ILRMAに加え，それぞれをブラインド及び半教師ありランク制約付き空間共分散行列推
定法の初期化方法に用いた，計 9手法の SDR改善量を比較した．ブラインドのランク制約付
き空間共分散行列推定法の iterationは最も SDR改善量が大きいものを採用した．同様に，半
教師ありランク制約付き空間共分散行列推定法のパラメータ α′， β′ 及び iterationは，最も
SDR改善量が大きいものを採用して比較を行った．
結果を図 7.3に示す．結果から，特に入力 SNRが低い場合に半教師ありランク制約付き空

間共分散行列推定法の SDR改善量が最も大きい．これは，教師信号を用いた拡散性雑音のモ
デリングにより，入力 SNRが大きい中で空間共分散行列の高精度な推定を達成できているた
めと考えられる．さらに，BS-ILRMAで初期化した半教師ありランク制約付き空間共分散行
列推定法の SDR改善量が最も大きく，雑音情報の利用によってより高精度な音源抽出が可能
になることがわかった．
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図 7.1: Average SDR improvements of semi-supervised rank-constrained SCM estimation ini-
tialized by ILRMA for each update, when distance to target source is set to 75 cm. Three
lines (α′ = 200, 400, and 800) are plotted in each β′ and each input SNR settings.

図 7.2: Average SDR improvements of semi-supervised rank-constrained SCM estimation initial-
ized by ILRMA, when distance to target source is set to 75 cm. Two lines (β′ = 1 and 10000) are
plotted in each α′ and each input SNR settings.
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図 7.3: Average SDR improvements of blind/semi-supervised rank-constrained SCM estimation
initialized by ILRMA, SS-ILRMA, BS-ILRMA, and each ILRMA. Scores of blind/semi-supervised
rank-constrained SCM estimation are the best performance out of 30 iterations.
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7.4 本章のまとめ
本章では，半教師ありランク制約付き空間共分散行列推定法について，(1)内部パラメータ

と SDR改善量の関係の調査と，(2)従来手法との比較実験を行った．(1)の実験結果から，入
力 SNRが低い場合には小さい α′，入力 SNRが高い場合には大きい α′を設定すると高い分離
性能を達成でき，また，β′は 1～10000の広い範囲で設定しても頑健に高い分離性能を達成す
ることがわかった．(2)の実験結果から，半教師ありランク制約付き空間共分散行列推定法は
従来手法と比較して高い分離性能を達成し，また初期化方法に BS-ILRMAを採用することで
さらに高い分離性能を達成することがわかった．
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第8章 結論

本論文では，補聴器システムに焦点を当て，両耳のマイクロホンだけでなくスマートフォ
ンに内蔵されているマイクロホンも含めた分散マイクロホンアレー補聴器システムを新たに
提案した．さらに本論文では，元来ブラインドの枠組みであったランク制約付き空間共分散
行列推定法を半教師ありアプローチへ拡張した手法を提案した．
第 1章では，音源分離の必要性及び分散マイクロホンアレーについて述べ，提案補聴器シ

ステムを提案する目的を述べた．また，会話直前の数秒の雑音情報を用いて半教師ありアプ
ローチが適用可能であることを述べ，半教師ありランク制約付き空間共分散行列推定法を提
案する目的を述べた．
第 2章では，基本的なBSSの定式化を行い，本論文で取り扱うBSS手法として ILRMAを，

BSE手法としてランク制約付き空間共分散行列推定法について述べた．また，半教師あり音
源分離手法として BS-ILRMAについて述べた．
第 3章では，新たな補聴器システムとして，両耳のマイクロホンだけでなくスマートフォ

ンのマイクロホンを含めた分散マイクロホンアレー補聴器システムを提案し，その動機，目
的，及び仕様について述べた．提案補聴器システムに基づいて，データ収録のための装置を
構築し，実環境下に基づき，インパルス応答及び拡散性雑音を収録した．
第 4章では，提案補聴器システムに対して，ランク制約付き空間共分散行列推定法が適用可

能であるか評価実験により評価した．併せて，ランク制約付き空間共分散行列推定法の内部
パラメータと分離性能の関係を実験的に明らかにした．さらに．提案補聴器システムにより
もたらされた，マイク総数の増加及び目的音源に近い位置の空間情報が利用可能という 2点
が優位に働いているかを実験により評価した．
第 5章では半教師あり音源分離手法である BS-ILRMAの提案補聴器システムに対する有効

性を示した．その後，BS-ILRMAをランク制約付き空間共分散行列推定法の初期化方法に用
い，ILRMAを初期化に用いた場合と比較して，さらに高品質な分離を達成することを示した．
第 6章では，ブラインドのランク制約付き空間共分散行列推定法に対して，拡散性雑音の

空間共分散行列にモデル新たに導入することで，半教師ありアプローチへ拡張した手法を提
案した．
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第 7章では，半教師ありアプローチへ拡張したランク制約付き制約付き空間共分散行列推
定法の，内部パラメータと分離性能の関係及びブラインドのランク制約付き制約付き空間共
分散行列推定法に対する優位性を調査し，高い分離性能を達成できる内部パラメータと従来
手法と比較して高い分離性能を達成できることを示した．
最後に，実用に向けた今後の課題を述べる．まず，リアルタイム処理である．現在，ILRMA

やランク制約付き空間共分散行列推定法を用いて，オフラインで音源抽出を行っている．補
聴器を利用するシーンにおいては，これらの手法をオンラインで処理する必要があるが，現
状 ILRMAやランク制約付き空間共分散行列推定法をオンライン化した手法は知られていな
い．次に，マイクロホンの同期の問題である．現在は，A-D変換器を用いて各マイクロホン
を同期しているが，実際の利用シーンでは規模やコストの面で持ち運びは困難である．一方
で，非同期のマイクロホンに対して同期を行う手法も提案されているが，これらの手法を利
用しつつ，既存手法及び本論文で提案した手法が高品質な分離が行えるかを実験により明ら
かにする必要がある．
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