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ABSTRACT
Many noise reduction techniques generate two frequently
occurring problems: speech distortion and musical noise. A
number of methods have been proposed to solve these prob-
lems. One, which addresses the former problem, is harmonic
regeneration noise reduction (HRNR). Using restored sig-
nals, HRNR regenerates the harmonics that were eliminated.
Another, which addresses the latter problem, is a musical-
noise-free noise reduction method based on the minimum
mean-square error short-time spectral amplitude estimator.
The method can suppress noisy speech without generating
musical noise. This paper describes a new noise reduction
technique we propose that combines these two methods. The
technique is shown to be effective in suppressing both speech
distortion and musical noise generation.

Index Terms— MMSE-STSA estimator, musical noise,
harmonic regeneration, musical-noise-free speech enhance-
ment

1. INTRODUCTION
Many speech communication devices have come into use in
recent years. When using them, however, not only human
voices but also environmental noises are input at the same
time. Noise reduction techniques are necessary to extract
the speech component with high accuracy in a noisy environ-
ment [1–7]. However, many noise reduction methods gener-
ate two severe problems, i.e., speech distortion and musical
noise, owing nonlinear signal processing [8–12].

To date many noise reduction methods have been pro-
posed to overcome these problems. The harmonic regenera-
tion noise reduction (HRNR) technique addresses the speech
distortion problem [13]. Speech components contain many
harmonics that are eliminated by the noise reduction; speech
distortion can be argued as due to this elimination of harmon-
ics. The HRNR technique restores the harmonic components
that are eliminated by noise suppression. Also, HRNR is ap-
plied after noise reduction techniques have been applied and
calculates restored signal from the signals suppressed as a
consequence of noise reduction. These restored signals have
harmonic components based on the suppressed signals.
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Other methods that suppress noisy speech without gener-
ating musical noise have also been proposed [14–16]. These
techniques, collectively called musical-noise-free speech en-
hancement methods, are useful in systems such as telecom-
munication systems, hearing aid systems, and video con-
ference systems [17, 18]. In particular, it is known that
a musical-noise-free noise reduction technique based on
a minimum mean-square error short-time spectral ampli-
tude (MMSE-STSA) estimator (hereafter referred to as a
musical-noise-free MMSE-STSA estimator) achieves lower
speech distortion than other musical-noise-free noise reduc-
tion techniques [15]. By introducing the bias factor into the
a priori SNR estimator, the musical-noise-free MMSE-STSA
estimator suppresses musical noise generation.

In this paper, we propose a new noise reduction method
which applies biased a priori SNR estimation to HRNR. We
experimentally demonstrate the tendency of musical noise
generation by introducing a bias. The results of the compar-
ative experiments are given in terms of speech distortion and
musical noise generation.

2. RELATED WORK

2.1. Signal definition

The observed signal in time-frequency domain X(p, k) con-
sists of the speech signal S(p, k) and the noise signal N(p, k).
This is expressed as X(p, k) = S(p, k) + N(p, k), where p
is the short-time frame index and k is the frequency bin. The
spectral gain G(p, k) = g(ξ(p, k), γ(p, k)) of each noise re-
duction method is obtained to estimate the spectrum of the
speech signal as Ŝ(p, k) = G(p, k)X(p, k). The spectral
gain is expressed as a function of a priori SNR ξ(p, k) =
E[|S(p, k)|2]/E[|N(p, k)|2] and a posteriori SNR γ(p, k) =
|X(p, k)|2/E[|N(p, k)|2]. Where E[·] is the expectation op-
erator.

2.2. MMSE-STSA estimator

The MMSE-STSA estimator minimizes the mean-square er-
ror between the amplitude spectra of the original and the
estimated speech [4]. For this estimator it is necessary to
obtain a priori SNR and a posteriori SNR for the spectral
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gain GSTSA(p, k) as
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where Γ(·) and M(a; b; z) are respectively the gamma func-
tion and the confluent hypergeometric function.

However, a priori SNR ξ(p, k) contains a spectrum of
clean speech ξ(p, k) that is not available in actual environ-
ments. Therefore, by using a decision-directed approach [4]
we estimate the a priori SNR as

ξ̂DD(p, k)=α
|Ŝ(p− 1, k)|2

E[|N̂(p, k)|2]
+(1−α)Max [γ(p, k)−1, 0] ,

(2)

where N̂(p, k) is the estimated noise signal and α is the for-
getting factor. Generally, the forgetting factor α is set to 0.98
to obtain good sound quality [4]. Also, Max [a, b] selects the
larger of a and b. Finally, the output signal of the MMSE-
STSA estimator is obtained as

ŜSTSA(p, k) = GSTSA(p, k)X(p, k)

= g(ξ̂DD(p, k), γ(p, k))X(p, k). (3)

2.3. HRNR

Generally, excessive noise suppression leads to serious speech
distortion. The HRNR technique has been proposed as a
means to restore the harmonics that were eliminated due to
noise reduction [13]. The HRNR process can be mainly di-
vided into two steps. In the first, various noise reduction
methods are applied to noisy speech and the speech spec-
trum is estimated. In the second, the HRNR of a priori
SNR ξ̂HRNR(p, k) is computed as follows:

ξ̂HRNR(p, k) =
ρ|Ŝ(p, k)|2 + (1− ρ)|Sharmo(p, k)|2

E[|N̂(p, k)|2]
, (4)

where ρ is used to adjust the mixing level of |Ŝ(p, k)| and
|Sharmo(p, k)|. The spectrum of the restored signal Sharmo(p, k)
is obtained by

Sharmo(p, k) = FT
[
Max

(
IFT[Ŝ(p, k)], 0

)]
, (5)

where FT [·] and IFT [·] respectively represent the Fourier
and the inverse Fourier transforms. Finally, the regenerated
harmonics signal ŜHRNR(p, k) is computed using the HRNR
of spectral gain GHRNR(p, k), which is obtained by the new
a priori SNR in Eq. (4) and expressed by

ŜHRNR(p, k) = GHRNR(p, k)X(p, k)

= g(ξ̂HRNR(p, k), γ(p, k))X(p.k). (6)

2.4. Musical-noise-free MMSE-STSA estimator

The kurtosis ratio (KR) has been proposed [19] as an objec-
tive measure of musical noise generation. The KR is defined
by kurtproc/kurtorg, where kurtproc and kurtorg are the
kurtosis of the processed and observed signals, respectively.
Musical noise is perceived as the skirt in terms of probability
density function in the power spectral domain, and kurtosis
represents the shape (or skirt) of the distribution. The increase
of kurtosis by the signal processing means the generation of
musical noise. Namely, KR evaluates the amount of musical
noise. The small KR (> 1) indicates the few generations
of musical noise and KR (≤ 1) indicates no generation of
that (musical-noise-free condition). The musical-noise-free
speech enhancement method means that almost no musi-
cal noise is generated even with high noise reduction. The
musical-noise-free theorem was originally applied to spectral
subtraction [3, 14]. In addition, Kanehara et al. have revealed
the theoretical relationship between the amounts of noise re-
duction and musical noise generation in the MMSE-STSA
estimator and concluded that no musical-noise-free condi-
tion exists regardless of the value of the internal parameter
[20]. However, Nakai et al. discovered the existence of a
musical-noise-free condition in the MMSE-STSA estimator
by introducing biased a priori SNR [15]. The biased a priori
SNR ξ̂bias is computed to provide the bias factor in the term
of maximum likelihood estimation in Eq. (2) and given by

ξ̂bias=α
|Ŝ(p− 1, k)|2

E[|N̂(p, k)|2]
+(1− α)Max[γ(p, k)− 1, ε], (7)

where ε is the bias value.

3. PROPOSED METHOD

3.1. Amounts of noise reduction and musical noise gener-
ation in HRNR

In this section we describe how we experimentally investi-
gated the relationship between the amounts of noise reduc-
tion and musical noise generation obtained with HRNR. The
experiment was conducted to determine whether a musical-
noise-free condition exists in the HRNR. In this experiment,
the internal parameter ρ for HRNR in Eq. (4) was set from
0.0 to 1.0. The target speech signal was generated by adding
railway station noise with 0 dB SNR.

Figure 1 shows the behavior of the noise reduction
rate (NRR) defined as the difference between output and
input SNRs [14] and KR when the internal parameter ρ is
increased. From Fig. 1, ρ increases as NRR decreases. It
also confirms that a musical-noise-free condition does not
exist in HRNR for any internal parameter values in this case.
Although we investigated the tendency obtained from the
same experiments in other noise condition, it does not almost
achieve the musical-noise-free condition.
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Fig. 1. Relation between NRR and KR in HRNR when inter-
nal parameter ρ is increased.

3.2. Biased HRNR

It is known that the amount of musical noise decreases by
setting a bias [8]. We therefore introduce biased a priori SNR
into HRNR (biased HRNR). Eq. (4) is rewritten as

ξ̂prop(p, k) =ρ′Max

[
|Ŝ(p, k)|2

E[|N̂(p, k)|2]
, ε′

]

+ (1− ρ′)
|Sharmo(p, k)|2

E[|N̂(p, k)|2]
, (8)

where ξ̂prop(p, k) is the biased a priori SNR, ε′ is the bias
value, and ρ′ is the internal parameter (0 ≤ ρ′ ≤ 1). The
biased HRNR process is the same as the HRNR process.
Namely, Eq. (8) corresponds to the second step in HRNR. We
finally obtain the estimated speech spectrum using ξ̂prop(p, k)
as

Ŝprop(p, k) = g(ξ̂prop(p, k), γ(p, k))X(p, k). (9)

Since we confirmed the objective evaluation scores by Eq. (8)
are better than those by overall a priori SNR flooring case in
preliminary experiment, we adopt Eq. (8) and use it in subse-
quent comparative experiment.

3.3. Existence of musical-noise-free condition in biased
HRNR

We investigate the speech quality obtained with the proposed
method to adjust the internal parameter in Eq. (8). In the
work, ρ′ is fixed to three values of 0.1, 0.5 and 0.9 and the bi-
ased value ε′ is increased from 0 to 3.0. The other experimen-
tal conditions were the same as those given in Subsect. 3.1.
Figure 2 represents the relation between NRR and KR in the
proposed method. Proposed method can achieve musical-
noise-free condition by rising ε′. KR decreases rapidly when
ε′ begins to increase, whereas KR inflection becomes smaller
as ε′ approaches 3.0. Also, NRR in the ρ′ = 0.1 case is larger

Conventional*HRNR*(**************)

Musical4noise4free* condition
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Fig. 2. Relation between NRR and KR in proposed method
when internal parameter ε′ is increased while internal param-
eter ρ′ remains fixed.

than in any of the other cases in the musical-noise-free con-
dition. Hence, it is better to set ρ′ to a lower value. We also
looked into the tendency obtained from the same experiments
in other noise condition as in Subsect. 3.1 and confirmed the
musical-noise-free conditions which become KR ≤ 1 exist by
rising bias ε′ in all noise types.

3.4. Effects of harmonic regeneration with biased HRNR

In the previous subsection, we confirmed that the musical-
noise-free condition exists in the proposed method. In this
subsection we will use spectrograms to show that biased
HRNR can restore the eliminated harmonics. For compar-
ison, we applied the MMSE-STSA estimator [4] and the
proposed method to noisy speech mixed with white Gaussian
noise at 10 dB SNR. To clearly demonstrate the harmonics
were restored, we set NRR to 20 dB so that the two output
signals would have serious distortion. Figure 3 shows spec-
trograms of clean speech (a), noisy speech (b), and suppressed
speech obtained with the MMSE-STSA estimator (c) and the
proposed method (d). From Fig. 3 (c) and (d), we can confirm
that the proposed method is able to prevent the generation of
musical noise and reconstructs the lost harmonics.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

To ascertain the validity of the proposed method, we per-
formed a comparative experiment with three conventional
speech enhancement methods: MMSE-STSA estimator,
HRNR, and musical-noise-free MMSE-STSA estimator. The
objective scores were KR and cepstral distortion (CD), which
indicates the amount of speech distortion [21].

We used ten sentences (five for male speech and five for
female speech) as the target speech signals, which were mixed
with three types of noise (railway station, street, and white
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Fig. 3. Spectrograms of clean speech (a), noisy speech (b),
and suppressed speech obtained with MMSE-STSA estima-
tor (c) and proposed method (d).

Fig. 4. KR at 0 dB (upper) and 5 dB (lower) input SNRs.
Filled areas denote musical-noise-free condition.

Gaussian) at 0 dB and 5 dB input SNRs. Here, the gain func-
tions of HRNR and the proposed method in Eq. (6) and Eq. (9)
were set as the MMSE-STSA estimator. To achieve 10 dB
NRR in each noise reduction method, we manually controlled
the internal parameters (ρ′ = 0.1 for the proposed method).
Note that we made NRR of the three compared methods and
proposed method even (i.e., we did not set their parameters so
that these KRs are 1 or less); therefore, two of the musical-

Fig. 5. CD at 0 dB (upper) and 5 dB (lower) input SNRs.

noise-free approaches we mentioned didn’t have to achieve
musical-noise-free condition.

4.2. Results

The objective evaluation results obtained for musical noise
generation and speech distortion are shown in Figs. 4 and 5.
In both figures the input SNR in the upper part was 0 dB
and that in the lower part was 5 dB. First, from Fig. 4, the
musical-noise-free MMSE-STSA estimator and the proposed
method achieved the musical-noise-free condition for most
noise cases. Although the KR score of the proposed method
is slightly more than 1.0 for railway station noise, the method
generates little musical noise compared with other methods.
This indicates it is effective in terms of musical noise genera-
tion. Next, Fig. 5 indicates that the proposed method achieved
the lowest CD score in all cases. This shows it achieves high-
quality noise reduction comprehensively compared with the
other methods under the same NRR conditions.

5. CONCLUSION
In this paper we described a new method we propose that
generates almost no musical noise with low speech distortion
by applying biased harmonic regeneration noise reduction.
Experimental evaluation results confirmed that the musical-
noise-free condition could be obtained with the proposed
method. A comparative experiment showed that the method
is superior to conventional methods in musical noise genera-
tion and speech distortion.
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